M346 Third Midterm Exam, November 20, 2009

1) Gram Schmidt:
a)(10 points) On \mathbb{R}^{3} with the usual inner product, Use Gram-Schmidt to convert $\mathbf{x}_{1}=(1,2,0)^{T}, \mathbf{x}_{2}=(3,1,1)^{T}, \mathbf{x}_{3}=(4,3,-5)^{T}$ to an orthogonal basis.
b) (15 points) On $\mathbb{R}_{2}[t]$ with the inner product $\langle f \mid g\rangle=\int_{0}^{2} f(t) g(t) d t$, transform $\left\{1, t, t^{2}\right\}$ to an orthogonal basis.
2. a) (15 points) Find the equation of the best line through the points $(1,-4)$, $(2,1)$, and $(3,2)$.
b) (10 points) Let V be the subspace of \mathbb{R}^{3} that is the span of the vectors $(1,2,3)^{T}$ and $(1,1,1)^{T}$. Find the point in V that is closest to $(-4,1,2)^{T}$.
3. On \mathbb{C}^{3} with the usual inner product, let

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+i x_{2}-i x_{3} \\
2 x_{2}+(1-i) x_{3} \\
i x_{1}+3 x_{2}+x_{3}
\end{array}\right)
$$

a)(5 points) Find the matrix of L
b) (10 points) Let $\mathbf{x}=\left(\begin{array}{c}1 \\ 10 \\ 100\end{array}\right)$. Compute $L^{\dagger}(\mathbf{x})$.
c) (10 points) Let V be the space of real-valued functions on the real line, with the inner product $\langle f \mid g\rangle=\int_{-\infty}^{\infty} f(t) g(t) d t$. Let $A: V \rightarrow V$ be the linear transformation $A=t+d / d t$ (That is, $\left.(A(f))(t)=t f(t)+f^{\prime}(t)\right)$. Let $g(t)=e^{-t^{2} / 2}$. Compute $A g$ and $A^{\dagger} g$.
4. Grab bag. These are short-answer or true/false questions. Each question is worth 5 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) True or false? The matrix $\left(\begin{array}{cc}5 & 4 i \\ -4 i & -1\end{array}\right)$ has orthogonal eigenvectors.
b) True or false? The matrix $\frac{1}{\sqrt{7}}\left(\begin{array}{cc}2-i & -1+i \\ 1+i & 2+i\end{array}\right)$ is unitary.
c) Let $\mathbf{x}(t)$ be the solution to $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$, where $A=\left(\begin{array}{cccc}0 & 1 & 2 & 3 \\ -1 & 0 & -1 & 4 \\ -2 & 1 & 0 & 5 \\ -3 & -4 & -5 & 0\end{array}\right)$ and $\mathbf{x}(0)=(5,-3,1,1)^{T}$ Find the limit, as $t \rightarrow \infty$, of $|\mathbf{x}(t)|$. (This has a quick
and easy solution, and you do NOT have to diagonalize A !)
d) True or false? If a matrix M satisfies $M=M^{T}$, then the eigenvalues of M are real.
e) True or false? If a matrix is unitary, then it is not Hermitian.

