M346 Third Midterm Exam, April 24, 2009

1. Is it fixed yet? Consider the system of nonlinear differential equations:

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}\left(3-2 x_{1}-x_{2}\right) \\
\frac{d x_{2}}{d t} & =x_{2}\left(5-2 x_{1}-3 x_{2}\right)
\end{aligned}
$$

a) Find all the fixed points.
b) For each fixed point, indicate how many stable modes, and how many unstable modes, there are.
2. Gram crackers. In \mathbb{R}^{3}, with the standard inner product, consider the vectors $\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{c}4 \\ -1 \\ 4\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{c}16 \\ 9 \\ -2\end{array}\right)$ that form a basis for \mathbb{R}^{3}.
a) Use the Gram-Schmidt process to convert this basis to an orthogonal basis $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\}$. (Note: the vectors \mathbf{y}_{i} do not have to be orthonormal, just orthogonal.)
b) The vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ can be expressed as $c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}+c_{3} \mathbf{y}_{3}$. Find c_{1}, c_{2} and c_{3}.
3. When least is best. Find all least-squares solutions to the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
2 x_{1}+4 x_{2} & =1 \\
3 x_{1}+6 x_{2} & =1 \\
4 x_{1}+8 x_{2} & =1
\end{aligned}
$$

4. Working 24/7. Consider the Hermitian matrix $H=\left(\begin{array}{cc}24 & 7 \\ 7 & -24\end{array}\right)$.
a) Find the eigenvalues λ_{1} and λ_{2} and corresponding eigenvectors \mathbf{b}_{1} and \mathbf{b}_{2} of H.
b) Decompose $\mathbf{x}_{0}=\binom{13}{9}$ as a linear combination of \mathbf{b}_{1} and \mathbf{b}_{2}.
c) If $d \mathbf{x} / d t=H \mathbf{x}$ and $\mathbf{x}(0)=\mathbf{x}_{0}$ as in (b), what is $\mathbf{x}(t)$?
