1) (25 pts) Consider the matrix $A = \begin{pmatrix} 4 & 2 \\ 8 & -2 \end{pmatrix}$.
 a) Find the eigenvalues of A. For each eigenvalue, find a corresponding eigenvector.
 b) Compute A^n for all n. Make your answer as explicit as possible.
 c) Compute e^{At} as a function of t. Make your answer as explicit as possible.

2. (30 points, 2 pages) Let $A = \begin{pmatrix} -4 & 5 \\ 5 & -4 \end{pmatrix}$. This matrix has eigenvalues 1 and -9 and corresponding eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
 a) Find the solution to $x(n+1) = Ax(n)$ with initial condition $x(0) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
 b) Find the solution to $\frac{dx}{dt} = Ax$ with initial condition $x(0) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
 c) Find the solution to $\frac{d^2x}{dt^2} = Ax$ with initial conditions $x(0) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\dot{x}(0) = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$.

3. (15 pts) The differential equations
 \[
 \frac{dx_1}{dt} = e^{-4x_1} - x_2 \\
 \frac{dx_2}{dt} = 5x_1x_2
 \]
 have a fixed point at $x_1 = 0, x_2 = 1$. Find the linear approximation to these equations near $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and determine whether this fixed point is stable. Explain your reasoning!
4. (15 points) On $\mathbb{R}_2[t]$ with the inner product $\langle f|g \rangle = \int_0^1 f(t)g(t)dt$, use Gram-Schmidt to convert $\{1, 2t, 6t^2\}$ to an orthogonal basis.

5. (15 points) In \mathbb{R}^5 with the standard inner product, let V be the subspace spanned by

\[
\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} 4 \\ 3 \\ 5 \\ -2 \\ 1 \end{pmatrix}.
\]

Write $b = \begin{pmatrix} 7 \\ 4 \\ 5 \\ 1 \\ 2 \end{pmatrix}$ as the sum of two vectors, one in V and the other orthogonal to V.