
M346 Final Exam Solutions, May 14, 2011

1) In R
2, consider the operator L(x) = Ax, where A =

(

5 10
−15 20

)

. Con-

sider the basis B =

{(

2
1

)

,

(

1
3

)}

and the vector x =

(

120
70

)

.

a) Find the coordinates of x in the B basis. (That is, find [x]B.)

PEB =

(

2 1
1 3

)

, so PBE = P−1

EB = 1

5

(

3 −1
−1 2

)

, so [x]B = PBEx =
(

58
4

)

. You can check that

(

120
70

)

is indeed 58

(

2
1

)

+ 4

(

1
3

)

.

b)Find the coordinates of L in the B basis, that is [L]B.

[L]B = PBEAPEB =

(

14 12
−8 11

)

.

2. Let V = R2[t], the space of quadratic polynomials in a variable t. On
V , consider the operator (L(p))(t) = p(2t + 1), where the right hand side
means the polynomial p evaluated at the point 2t + 1. (If p(t) were the
function sin(t), then L(p) would be the function sin(2t+ 1). Of course, p is
a polynomial rather than a trig function, but the rule for how L acts is the
same.)

a) Find the matrix of L with respect to the basis E = {1, t, t2}.

L(1) = 1, L(t) = 1 + 2t, and L(t2) = (2t + 1)2 = 1 + 4t + 4t2, so the

matrix is





1 1 1
0 2 4
0 0 4



.

b) Find all solutions to L(p) = 2p.

This is another way of saying “find all eigenvectors of L with eigenvalue
2”. These are the vectors in V whose coordinates are eigenvectors of [L]B
with eigenvalue 2. By row reduction, you get that [p]B must be a multiple

of





1
1
0



, so p itself must be a multiple of 1 + t.

3. Diagonalization.

a) Find the characteristic polynomial of the matrix A =





1 −2 −3
−3 0 −2
−4 −1 0



.
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You do not need to find the eigenvalues or eigenvectors.

pA(λ) = det





λ− 1 2 3
3 λ 2
4 1 λ



 = λ3 − λ2 − 20λ + 27. No, I don’t expect

you to find the roots of this!

Note that the definition of pA(λ) is det(λI −A), not det(A− λI)! These
expressions differ by a factor of (−1)n.

b) Find the eigenvalues of B =









2 1 0 0
−3 6 0 0
3 5 2 3
2 9 −3 2









. You do not need to find

the eigenvectors.

This is block triangular, so we just need to find the eigenvalues of

(

2 1
−3 6

)

and the eigenvalues of

(

2 3
−3 2

)

. These can be done by finding the char-

acteristic polynomial and finding its roots, but there are easier ways. For
the first matrix, the rows all sum to 3 and the trace is 8, so the eigenvalues

must be 3 and 5. For the second matrix, this is of the form

(

a −b
b a

)

with

eigenvalues a± bi, so our eigenvalues oare 2− 3i and 2 + 3i. Put everything
together, and the eigenvalues are 3, 5, and 2± 3i.

c) Find the eigenvalues and eigenvectors of C =

(

5 2
−1 2

)

.

The trace is 7 and the determinant is 12, so the eigenvalues are 3 and 4.
(Or you can compute the characteristic polynomial and apply the quadratic

formula.) By row reduction, the eigenvectors are found to be

(

−1
1

)

and
(

−2
1

)

.

4. Consider the matrix A = 1

5





−4 0 0
0 1 −2
0 2 1



.

a) Is the system of equations x(n + 1) = Ax(n) stable or unstable? What
is/are the dominant eigenvalue(s)?

The eigenvalues of A are −4/5 and (1± 2i)/5, with corresponding eigen-
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vectors b1 =





1
0
0



 and b2,3 =





0
±i
1



. All of these have magnitude less

than 1, so the system is stable. The biggest eigenvalue (in magnitude) is
−4/5, so that’s the dominant eigenvalue.

b) Find a solution to x(n+ 1) = Ax(n) with initial condition x(0) =





1
1
0



.

(You can leave your answer as a linear combination of eigenvectors.)

x(0) = b1−
i
2
b2+

i
2
b3, so x(n) = (−4/5)nb1−

i
2

(

1+2i
5

)n
b2+

i
2

(

1−2i
5

)n
b3.

c) Now consider the system of differential equations dx
dt

= Ax. Is the system
stable, neutral, or unstable? What is/are the dominant eigenvalues?

Since (1 ± 2i)/5 have positive real part, the system is unstable. The
dominant eigenvalue is the one with the greatest real part. This is a tie
between (1± 2i)/5.

d) Find a solution to dx
dt

= Ax with initial condition x(0) =





1
1
0



.

x(t) = e−4t/5b1 −
i
2
e

(1+2i)t
5 b2 +

i
2
e

(1−2i)t
5 b3. This has the same form as the

solution to part (b), only with eλt instead of λn. If you add up the different

terms, it actually simplifies greatly, to x(t) =





e−4t/5

et cos(2t)
et sin(2t)



.

5. Orthogonality. In R
3, let V be the span of the vectors





1
2
3



 and





−1
4
7



.

This problem is essentialy Gram-Schmidt applied to the three vectors




1
2
3



,





−1
4
7



 and





70
0
0



, except that I asked about the first two vectors

in part (a) and the third vector in part (b).

a) Use Gram-Schmidt to find an orthogonal basis for V .

y1 = x1 =





1
2
3
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y2 = x2 −
〈y1|x2〉
〈y1|y1〉

y1 = x2 −
28

14
y1 =





−3
0
1



.

b) Let x =





70
0
0



. Write x as the sum of two vectors, one in V and the

other orthogonal to V .

We want to write x = v + w, where v ∈ V and w ⊥ V . v is the

projection of x onto V , and equals 70

14
y1+

−210

10
y2 =





68
10
−6



. w is what’s left

over, namely





2
−10
6



.

6. a) On C
3, let the operator L be given by the rule L(x) =





3x1 + 5x2 − x3

4x1 + ix2 + x3

7x1 − x2 + ix3



.

Compute L†(x).

The matrix of L is





3 5 −1
4 i 1
7 −1 i



, so the matrix of L† is





3 4 7
5 −i −1
−1 1 −i



,

so L†(x) =





3x1 + 4x2 + 7x3

5x1 − ix2 − x3

−x1 + x2 − ix3



.

b) Let A =









0 −3 0 0
3 0 0 0
0 0 0 −2
0 0 2 0









, let B = eA, and let C = eπA. Which of these

matrices are Hermitian? Which are anti-hermitian? Which are orthogonal?
Explain.

A is real anti-symmetric, hence anti-hermitian, which means that the
eigenvalues are pure imaginary (±3i and ±2i) and the eigenvectors are or-
thogonal. The eigenvectors of A are also the eigenvectors of B and C. The
eigenvalues of B are e±2i, e±3i which are complex and on the unit circle, while
the eigenvalues of C are e±2πi = 1 and e±3πi = −1. These are both on the
unit circle and are real. Since A is a real matrix, both B and C are real
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matrices. Thus, C is Hermitian, A is anti-Hermitian, and both B and C are
orthogonal.

7. Working on the interval [0, 1], let f0(x) = 1 for 0 < x < 1. We write this
function as a Fourier series f0(x) =

∑∞
n=1

an sin(nπx).

a) Compute the coefficients an.

an = 2

1

∫

1

0
1× sin(nπx)dx = −2

nπ
cos(nπx)|10. This equals

4

nπ
if n is odd and

0 if n is even.

b) Now suppose that f(x, t) satisfies the “heat equation”

∂f

∂t
=

∂2f

∂x2
,

with Dirichlet boundary conditions f(0, t) = f(1, t) = 0. [Physical note:
f(x, t) describes the temperature of a point x along a rod of length 1 at time
t, where the ends of the rod are in contact with heat sinks at temperature 0.]
Viewing this as an ordinary differential equation (df/dt = L(f)) in a space of
functions, what is the dominant mode? Is it stable or unstable? How quickly
does it grow or shrink?

This is analogous to solving the wave equation in terms of standing waves,
except that our equation is df

dt
= Af rather than d2f

dt2
= Af , where A is the

operator d2/dx2. As with the standing wave calculation, the eigenvalues of
A are −n2π2, and the eigenvectors are sin(nπx). All eigenvalues are nega-
tive, meaning that all terms shrink away with time, but the least negative
eigenvalue (i.e. the dominant eigenvalue) is −π2, meaning that the term that
survives the longest goes as e−π2t.

c) Find the solution f(x, t) for all (non-negative) t, starting with initial con-
dition f(x, 0) = f0(x). You can leave your answer as a series. [Note: The
initial condition is discontinuous at x = 0 and x = 1, since the entire rod is
hot but the surroundings are cold, but the solution quickly becomes smooth.]

f(x, t) =
∑

ane
λnt sin(nπx) =

∑

n odd

4

nπ
e−n2π2t sin(nπx).
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