1) In \mathbb{R}^{2}, consider the operator $L(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{cc}5 & 10 \\ -15 & 20\end{array}\right)$. Consider the basis $\mathcal{B}=\left\{\binom{2}{1},\binom{1}{3}\right\}$ and the vector $\mathbf{x}=\binom{120}{70}$.
a) Find the coordinates of \mathbf{x} in the \mathcal{B} basis. (That is, find $[\mathbf{x}]_{\mathcal{B}}$.)
b)Find the coordinates of L in the \mathcal{B} basis, that is $[L]_{\mathcal{B}}$.
2. Let $V=\mathbb{R}_{2}[t]$, the space of quadratic polynomials in a variable t. On V, consider the operator $(L(\mathbf{p}))(t)=\mathbf{p}(2 t+1)$, where the right hand side means the polynomial \mathbf{p} evaluated at the point $2 t+1$. (If $\mathbf{p}(t)$ were the function $\sin (t)$, then $L(\mathbf{p})$ would be the function $\sin (2 t+1)$. Of course, \mathbf{p} is a polynomial rather than a trig function, but the rule for how L acts is the same.)
a) Find the matrix of L with respect to the basis $\mathcal{E}=\left\{1, t, t^{2}\right\}$.
b) Find all solutions to $L(\mathbf{p})=2 \mathbf{p}$.
3. Diagonalization.
a) Find the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}1 & -2 & -3 \\ -3 & 0 & -2 \\ -4 & -1 & 0\end{array}\right)$.

You do not need to find the eigenvalues or eigenvectors.
b) Find the eigenvalues of $B=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ -3 & 6 & 0 & 0 \\ 3 & 5 & 2 & 3 \\ 2 & 9 & -3 & 2\end{array}\right)$. You do not need to find the eigenvectors.
c) Find the eigenvalues and eigenvectors of $C=\left(\begin{array}{cc}5 & 2 \\ -1 & 2\end{array}\right)$.
4. Consider the matrix $A=\frac{1}{5}\left(\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & 1\end{array}\right)$.
a) Is the system of equations $\mathbf{x}(n+1)=A \mathbf{x}(n)$ stable or unstable? What is/are the dominant eigenvalue(s)?
b) Find a solution to $\mathbf{x}(n+1)=A \mathbf{x}(n)$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
(You can leave your answer as a linear combination of eigenvectors.)
c) Now consider the system of differential equations $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$. Is the system stable, neutral, or unstable? What is/are the dominant eigenvalues?
d) Find a solution to $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
5. Orthogonality. In \mathbb{R}^{3}, let V be the span of the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 4 \\ 7\end{array}\right)$.
a) Use Gram-Schmidt to find an orthogonal basis for V.
b) Let $\mathbf{x}=\left(\begin{array}{c}70 \\ 0 \\ 0\end{array}\right)$. Write \mathbf{x} as the sum of two vectors, one in V and the other orthogonal to V.
6. a) On \mathbb{C}^{3}, let the operator L be given by the rule $L(\mathbf{x})=\left(\begin{array}{l}3 x_{1}+5 x_{2}-x_{3} \\ 4 x_{1}+i x_{2}+x_{3} \\ 7 x_{1}-x_{2}+i x_{3}\end{array}\right)$. Compute $L^{\dagger}(\mathbf{x})$.
b) Let $A=\left(\begin{array}{cccc}0 & -3 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0\end{array}\right)$, let $B=e^{A}$, and let $C=e^{\pi A}$. Which of these matrices are Hermitian? Which are anti-hermitian? Which are orthogonal? Explain.
7. Working on the interval $[0,1]$, let $f_{0}(x)=1$ for $0<x<1$. We write this function as a Fourier series $f_{0}(x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)$.
a) Compute the coefficients a_{n}.
b) Now suppose that $f(x, t)$ satisfies the "heat equation"

$$
\frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}}
$$

with Dirichlet boundary conditions $f(0, t)=f(1, t)=0$. [Physical note: $f(x, t)$ describes the temperature of a point x along a rod of length 1 at time t, where the ends of the rod are in contact with heat sinks at temperature 0.] Viewing this as an ordinary differential equation $(d \mathbf{f} / d t=L(\mathbf{f}))$ in a space of functions, what is the dominant mode? Is it stable or unstable? How quickly does it grow or shrink?
c) Find the solution $f(x, t)$ for all (non-negative) t, starting with initial condition $f(x, 0)=f_{0}(x)$. You can leave your answer as a series. [Note: The initial condition is discontinuous at $x=0$ and $x=1$, since the entire rod is hot but the surroundings are cold, but the solution quickly becomes smooth.]

