
M346 Second Midterm Exam Solutions, April 7, 2011

1) The matrix A =
(

0 1
4 −3

)

has eigenvalues λ1 = 1 and λ2 = −4, with

eigenvectors b1 =
(

1
1

)

and b2 =
(

1
−4

)

. Suppose that x(n) satisfies the

system of equations x(n+ 1) = Ax(n) for all n ≥ 0.

a) If x(0) is “random” (meaning any nonzero vector that isn’t an eigenvector

of A), compute the limits limn→∞
x1(n)
x2(n)

and limn→∞
x1(n+1)
x1(n)

. In other words,

what is the asymptotic direction of x(n) and the asymptotic growth rate?

Since |−4| > |1|, the dominant eigenvalue is λ2, with dominant eigenvec-
tor b2. Asymptotically, x will point in the b2 direction and grow by a factor
of −4 each turn, so the two answers are −1/4 and −4, respectively.

b) Now suppose that x(0) =
(

5
−5

)

. Find x(n) exactly for all n.

Since x(0) = 3b1+2b2 (which you can get from change-of-basis matrices,

or from row reduction), x(n) = 3(1)nb1 + 2(−4)nb2 =
(

3 + 2(−4)n

3− 8(−4)n

)

.

2) Let A =
(

0 1
4 −3

)

, exactly as in problem 1. Suppose that x(t) satisfies

the differential equation dx/dt = Ax.

a) How many stable and how many unstable modes does this system have?
What is the dominant eigenvalue, and what is the dominant eigenvector? For
typical initial conditions, compute limt→∞ x1(t)/x2(t).

Since 1 > −4, the dominant eigenvalue is λ = 1 and the dominant eigen-
vector is (1, 1)T , so the limiting ratio is 1/1 = 1.

b) Solve the differential equations with initial conditions x(0) =
(

5
−5

)

Since x(0) = 3b1 + 2b2, x(t) = 3et
(

1
1

)

+ 2e−4t

(

1
−4

)

.

3) Let A =
(

0 1
4 −3

)

, exactly as in problems 1 and 2, only now consider

the second order differential equations d2x/dt2 = Ax. Write down the most
general solution to these equations. (Leave your answer in terms of arbitrary
constants, not in terms of initial conditions. I’m not giving you the initial
conditions.)

There is one unstable mode with λ1 > 0, so κ1 =
√
1 = 1, and one
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(neutrally) stable mode with λ2 = −4 < 0, so ω2 =
√
4 = 2. Our general

solution is

x(t) = c1 cosh(t)b1 + c2 sinh(t)b1 + c3 cos(2t)b2 + c4 sin(2t)b2.

This could also be expressed in terms of exponentials.

b) Find a solution corresponding to the initial conditions x(0) =
(

1
1

)

,

dx/dt(0) =
(

1
−4

)

.

Our constants are c1 = y1(0) = 1, c2 = ẏ1(0)/κ1 = 0, c3 = y2(0) = 0, and
c4 = ẏ2(0)/ω2 = 1/2, in other words

x(t) = cosh(t)b1 +
1

2
sin(2t)b2

4. Consider the nonlinear system of differential equations

dx1

dt
= x1(3− x1 − 2x2);

dx2

dt
= x2(3− 2x1 − x2)

These equations describe the fierce competition between two species for sim-
ilar resources, where x1(t) and x2(t) are the populations of the two species
at time t. The fixed points are at (0,0), (3,0), (0,3) and (1,1).

a) (16 pts) For each fixed point, determine how many stable and unstable
modes there are. Taking the gradients of the right hand gives

(

3− 2x1 − 2x2 −2x1

−2x2 3− 2x1 − 2x2

)

.

At the four fixed points this is
(

3 0
0 3

)

,
(−3 −6

0 −3

)

,
(−3 0
−6 −3

)

and
(−1 −2
−2 −1

)

.

The first matrix has two positive eigenvalues, so (0,0) has two unstable
modes. The second matrix has two negative eigenvalues, so (3,0) has two
stable modes. Ditto for (0,3). The last matrix has eigenvalues -3 and 1, so it
has one stable and one unstable mode, and the fixed point (1,1) is unstable.

b) (4 pts) Describe the possible long-term behavior of the system.

There are two stable fixed points, and the system will either approach
(3,0) or (0,3) in the long run. In other words, the competition is to the
death. If we start out with x1 > x2, then we will approach (3,0), with the
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second species going extinct. If we start out with x1 < x2, then we will
approach (0,3), with the first species going extinct.

This behavior depends on the parameters of the system. If instead we
had studied the system of equations

dx1

dt
= x1(3− 2x1 − x2);

dx2

dt
= x2(3− x1 − 2x2)

we would have found that (1,1) was a stable fixed point and that (0, 3
2
) and

(3
2
, 0) were unstable. In this modified system, the competition is not so fierce,

and the two species can coexist, always approaching an equilibrium where
the two species have the same population. In the initial system, they can’t.

5. a) Find an orthogonal basis for the column space of











1 2 2
2 1 3
3 2 −2
4 5 7











, where

we are using the standard inner product for R4 (and subspaces of R4).

y1 = x1 =











1
2
3
4











. Note that 〈y1|y1〉 = 30.

y2 = x2 − y1
〈y1|x2〉
〈y1|y1〉

= x2 − 30
30
y1 =











1
−1
−1
1











. Note that 〈y2|y2〉 = 4.

y3 = x3 − y1
〈y1|x3〉
〈y1|y1〉

− y2
〈y2|x3〉
〈y2|y2〉

= x2 − 30
30
y1 − 8

4
y2 =











−1
3
−3
1











.

b) Find an orthogonal basis for the column space of











1 0
i 1− i
i −1− 3i
2 −5











, using

the standard inner product for C4.

y1 = x1 =











1
i
i
2











. Note that 〈y1|y1〉 = 1(1)+ (−i)(i)+ (−i)(i)+2(2) = 7.
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y2 = x2 − y1
〈y1|x2〉
〈y1|y1〉

= x2 − −14
7
y1 =











2
1 + i
−1− i
−1











, since 〈y1|y2〉 = 1(0) +

(−i)(1−i)+(−i)(−1−3i)+2(−5) = −14. (If you forgot to take the complex
conjugates of the elements of |y1〉 when computing 〈y1|, you probably got
nonsense.)
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