M346 First Midterm Exam, February 17, 2011

1) (15 points) Consider the vectors $\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$ in \mathbb{R}^{3}. Are these vectors linearly independent? Do they span \mathbb{R}^{3} ? Do they form a basis for \mathbb{R}^{3} ?
2. (15 points) Let $V=\mathbb{R}_{2}[t]$ be the space of quadratic polynomials in a variable t and consider the linear transformation $L(\mathbf{p})=(t+1) \mathbf{p}^{\prime}(t)$ from V to itself, where $\mathbf{p}^{\prime}(t)$ is the derivative of $\mathbf{p}(t)$. Find the matrix of this linear transformation with respect to the (standard) basis $\left\{1, t, t^{2}\right\}$.
3. Let $A=\left(\begin{array}{ccccc}1 & -1 & -1 & 1 & 8 \\ 1 & 2 & 8 & 3 & 7 \\ 1 & 2 & 8 & -2 & -28 \\ 1 & 5 & 17 & 0 & -29\end{array}\right)$. A is row-equivalent to $\left(\begin{array}{ccccc}1 & 0 & 2 & 0 & -4 \\ 0 & 1 & 3 & 0 & -5 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
a) Find a basis for the null space of A.
b) Find a basis for the column space of A.
4. a) In \mathbb{R}^{2}, let $\mathcal{B}=\left\{\binom{3}{5},\binom{5}{8}\right\}$ be a basis, and let $\mathbf{x}=\binom{1}{-2}$. Let \mathcal{E} be the standard basis. Compute the change-of-basis matrices $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$ and compute the coordinates of \mathbf{x} in the \mathcal{B} basis.
b) In $\mathbb{R}_{1}[t]$, let $\mathcal{D}=\{3+5 t, 5+8 t\}$ and let $\mathbf{p}(t)=1+t$. Compute $[\mathbf{p}]_{\mathcal{D}}$.
5. a) Find the characteristic polynomial of $\left(\begin{array}{ll}3 & 2 \\ 5 & 1\end{array}\right)$. (You do not have to compute the eigenvalues or eigenvectors).
b) Find the eigenvalues of $\left(\begin{array}{cc}1 & -4 \\ 1 & 1\end{array}\right)$. (You do not have to find the eigenvectors).
c) $\lambda=2$ is one of the eigenvalues of $\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right)$. Find a basis for the corresponding eigenspace.
