M346 First Midterm Exam, February 17, 2011

1) (15 points) Consider the vectors $\begin{pmatrix} 1\\1\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\2\\5 \end{pmatrix}$ and $\begin{pmatrix} 3\\1\\5 \end{pmatrix}$ in \mathbb{R}^3 . Are these vectors linearly independent? Do they span \mathbb{R}^3 ? Do they form a basis for \mathbb{R}^3 ?

2. (15 points) Let $V = \mathbb{R}_2[t]$ be the space of quadratic polynomials in a variable t and consider the linear transformation $L(\mathbf{p}) = (t+1)\mathbf{p}'(t)$ from V to itself, where $\mathbf{p}'(t)$ is the derivative of $\mathbf{p}(t)$. Find the matrix of this linear transformation with respect to the (standard) basis $\{1, t, t^2\}$.

3. Let
$$A = \begin{pmatrix} 1 & -1 & -1 & 1 & 8 \\ 1 & 2 & 8 & 3 & 7 \\ 1 & 2 & 8 & -2 & -28 \\ 1 & 5 & 17 & 0 & -29 \end{pmatrix}$$
. *A* is row-equivalent to
$$\begin{pmatrix} 1 & 0 & 2 & 0 & -4 \\ 0 & 1 & 3 & 0 & -5 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
.

a) Find a basis for the null space of A.

b) Find a basis for the column space of A.

4. a) In \mathbb{R}^2 , let $\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \end{pmatrix} \right\}$ be a basis, and let $\mathbf{x} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Let \mathcal{E} be the standard basis. Compute the change-of-basis matrices $P_{\mathcal{E}\mathcal{B}}$ and $P_{\mathcal{B}\mathcal{E}}$ and compute the coordinates of \mathbf{x} in the \mathcal{B} basis.

b) In $\mathbb{R}_1[t]$, let $\mathcal{D} = \{3 + 5t, 5 + 8t\}$ and let $\mathbf{p}(t) = 1 + t$. Compute $[\mathbf{p}]_{\mathcal{D}}$.

5. a) Find the characteristic polynomial of $\begin{pmatrix} 3 & 2 \\ 5 & 1 \end{pmatrix}$. (You do not have to compute the eigenvalues or eigenvectors).

b) Find the eigenvalues of $\begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}$. (You do not have to find the eigenvectors).

c) $\lambda = 2$ is one of the eigenvalues of $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$. Find a basis for the corresponding eigenspace.