
M346 Final Exam, December 15, 2005

1. In R2[t], consider the standard basis E = 1, t, t2 and the alternate basis
B = 1 − t + 3t2, 2t − t2,−t + t2.

a) Are the vectors b1 = 1+3t+2t2, b2 = 2+ t+ t2, b3 = 7+4t+5t2 linearly
independent? Do they span R2[t]?

The coordinates of these vectors in the standard basis are (1, 3, 2)T ,

(2, 1, 1)T and (7, 4, 5)T . Since the matrix







1 2 7
3 1 4
2 1 5





 is invertible (row-

reduce it, or take its determinant, which is -6), those three coordinates form
a basis for R

3, so the original vectors form a basis for R2[t].

b) Find the change-of-basis matrices PEB and PBE .

The matrix PEB is made from the coordinates of the B vectors in the E

basis, and is







1 0 0
−1 2 −1
3 −1 1





. PBE is the inverse of this matrix, namely







1 0 0
−2 1 1
−5 1 2





.

c) Find [x]B, where x = 1 + 10t + 100t2.

[x]B = PBE [x]E =







1 0 0
−2 1 1
−5 1 2













1
10
100





 =







1
108
205







2. On M2,2, consider the linear transformation L
(

a b
c d

)

=
(

d −b
−c a

)

.

a) Find the matrix of L with respect to the standard basis

E =
{(

1 0
0 0

)

,
(

0 1
0 0

)

,
(

0 0
1 0

)

,
(

0 0
0 1

)}

.

Since L(e1) = e4, L(e2) = −e2, L(e3) = −e3 and L(e4) = e1 we have

[L]E =











0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0











.

b) Find a basis for the eigenspace E−1.
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We are looking for the null space of L− (−1)I =











1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1











. This is

one equation in 4 unknowns, namely x1 = −x4. The three free variables are
x2,3,4, and our basis vectors are (0, 1, 0, 0)T , (0, 0, 1, 0)T , and (−1, 0, 0, 1)T .
These are eigenvectors of the matrix [L]E and correspond to the eigenvectors
(

0 1
0 0

)

,
(

0 0
1 0

)

,
(−1 0

0 1

)

of the operator L.

3. a) Find the eigenvalues of the matrix




















3 2 3 1 4 1
−2 3 2 1 7 1
0 0 4 1 4 1
0 0 0 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2





















.

You do not need to compute the eigenvectors.

This is block-triangular. The upper left 2 × 2 block has eigenvalues 3 ±
2i, the middle block has eigenvalue 4, and the lower right 3 × 3 block has

eigenvalues 2, 2 ±
√

2. (The upper block is of the form
(

a −b
b a

)

, which

always has eigenvalues a ± bi, and the lower block should be familiar from
homework. It also isn’t too hard to compute directly.)

b) Compute A10, where A =
(

2/5 −6/5
−6/5 −7/5

)

.

The eigenvalues of A are 1 and -2, with eigenvectors (2,−1)T and (1, 2)T .

Thus A = PDP−1, where P =
(

2 1
−1 2

)

, D =
(

1 0
0 −2

)

and P−1 =

(1/5)
(

2 −1
1 2

)

. We then compute

A10 = PD10P−1 = (1/5)
(

2 1
−1 2

) (

1 0
0 1024

) (

2 −1
1 2

)

= (1/5)
(

1028 2046
2046 4097

)

.

4. Overpopulation in fairyland. Fairies come in two varieties: immortal and
mortal. Every year, each immortal fairy gives birth to three mortal fairies.
Every year, each mortal fairy gives birth to two immortal fairies, and then
dies. (Immortal fairies never die, hence the name.)
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a) Write down a set of equations to describe the evolution of the immortal
and mortal populations.

Let I(n) and M(n) be the populations of immortal and mortal fairies in

year n, and let x = (I,M)T . Then x(n + 1) = Ax(n), where A =
(

1 2
3 0

)

,

since each year every immortal fairy turns into one immortal (itself) and
three mortals, while each mortal turns into two immortals.

b) How fast does the overall fairy population grow? After a long time, what
will be the (limiting) ratio of immortal to mortal fairies?

The eigenvalues of A are 3 and -2, with eigenvectors (1, 1)T and 2,−3)T .
Thus the population grows asymptotically as 3n, and the ratio I:M ap-
proaches 1:1.

c) If in year zero there are 11 immortal fairies and 1 mortal fairy, how many
fairies of each type will there be in year n?

x(0) = (11, 1)T = 7(1, 1)T +2(2,−3)T , so x(n) = 7(3n)(1, 1)T +2(−2)n(2,−3)T .
In other words, I(n) = 7(3)n + 4(−2)n and M(n) = 7(3)n − 6(−2)n.

5. Let x(t) be a complex 2-vector that satisfies the differential equation

dx

dt
=

(

1 i
−i 1

)

x.

a) Find the general solution to this system of equations. How many
stable/neutral/unstable modes are there?

The eigenvalues of the matrix are 2 (unstable) and 0 (neutral), with
eigenvectors (1,−i)T and (1, i)T , respectively. The general solution is x(t) =

c2e
2t

(

1
−i

)

+ c0

(

1
i

)

. There are no stable modes, but there is one unstable

and one neutral.

b) If x(0) = (1, 0)T , find x(t).

x(0) = [(1, i)T + (1,−i)T ]/2, so x(t) = [e2t

(

1
−i

)

+
(

1
i

)

]/2.

6. Gram-Schmidt. Convert the following collections of vectors to orthogonal
collections using the Gram-Schmidt process.

a) In C
3 with the usual inner product, x1 = (1, 1 + i, i)T , x2 = (3, 2 + 2i, i)T ,

x3 = (12,−4 − 4i, 0)T .

y1 = x1 = (1, 1 + i, i)T , and we compute 〈y1|y1〉 = 4, 〈y1x2〉 = 8,
〈y1|x3〉 = 4. y2 = x2−(〈y1|x2〉/〈y1|y1〉)y1 = x2−2y1 = (1, 0,−i)T . We then
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compute 〈y2|y2〉 = 2 and 〈y2|x3〉 = 12, so y3 = x3 − (〈y1|x2〉/〈y1|y1〉)y1 −
(〈y2|x2〉/〈y2|y2〉)y2 = x3 − y1 − 6y2 = 5(2,−1 − i, i)T .

b) In R2[t], with the inner product 〈f |g〉 =
∫ 2
0 f(t)g(t)dt, x1 = 1, x2 = t,

x3 = t2.

y1 = x1 = 1, and we compute 〈y1|y1〉 = 2, 〈y1x2〉 = 2, 〈y1|x3〉 =
8/3. y2 = x2 − (〈y1|x2〉/〈y1|y1〉)y1 = x2 − y1 = t − 1. We then com-
pute 〈y2|y2〉 = 2/3 and 〈y2|x3〉 = /3, so y3 = x3 − (〈y1|x2〉/〈y1|y1〉)y1 −
(〈y2|x2〉/〈y2|y2〉)y2 = x3 − (4/3)y1 − 2y2 = t2 − 2t + 2/3.

7. Rotations. Let A = π
3







0 2 1
−2 0 2
−1 −2 0





 and let R = exp(A). Since A is

anti-symmetric, R is orthogonal, and is a rotation in R
3.

a) Find the axis for the rotation R, and the angle of rotation.

The eigenvalues of A are 0, iπ,−iπ, and the eigenvector with eigenvalue 0
is (2,−1, 2)T . This means that the eigenvalues of R are 1, eiπ, e−iπ, and that
the eigenvector with eigenvalue 1 is (2,−1, 2). Thus we have a rotation by π
about the (2,−1, 2)T axis.

b) Compute R.

Note that eiπ = e−iπ = −1, so R = P







1 0 0
0 −1 0
0 0 −1





 P−1. We could

compute the matrix P and its inverse (and most of you probably did it that

way), but there’s a cute shortcut, using the fact that D =







2 0 0
0 0 0
0 0 0





 − I,

so R = 2Pb1
− I = 2
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2
−1
2





 (2,−1, 2) − I =







−1/9 −4/9 8/9
−4/9 −7/9 −4/9
−1/9 −4/9 −1/9





.

8. a) Compute the solution to the wave equation: ∂2f/∂t2 = ∂2f/∂x2 on the
whole line with with initial conditions f(x, 0) = 1

1+x2 ,
∂f
∂t

(x, 0) = 3x
(1+x2)2

.

Note that v = 1 and that
∫

g0(x)dx = −3/(1+x2). Since h1 = (f0−
∫

g0)/2
and h2 = (f0 +

∫

g0)/2, we have h1(x) = 2/(1+x2) and h2(x) = −1/(1+x2).
Finally,

f(x, t) = h1(x − t) + h2(x + t) =
2

1 + (x − t)2
− 1

1 + (x + t)2
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b) Compute the solution to the wave equation on the half-line [0,∞) with
Dirichlet boundary conditions at x = 0 and with initial conditions f(x, 0) =
x/(1 + x2), ḟ(x, 0) = 0.

Since g0 = 0, we have h1 = h2 = f0/2 = x/(2+2x2). This applies only to
x > 0, and h1(x) = h2(x) = 0 for x < 0. We then take f(x, t) = h1(x − t) +
h2(x + t)− h1(−x− t)− h2(−x + t). Conveniently, h1(x− t)− h2(−x + t) =
1
2

x−t
1+(x−t)2

for all x, and likewise h2(x + t) − h1(−x − t) = 1
2

x+t
1+(x+t)2

, so

f(x, t) =
1

2

(

x − t

1 + (x − t)2
+

x + t

1 + (x + t)2

)

Another way of saying this is that f0 is already odd, so the expression in
the displayed equation solves the wave equation for all values of x and meets
the boundary condition.

9. Consider a vibrating string with v = L = 1, with f(x, 0) = f0(x) and
ḟ(x, 0) = g0(x), where f0(x) =

∑

n−3 sin(nπx) and g0(x) =
∑

2πn−2 sin(nπx).

a) Find f(x, t). You can write your solution as an infinite sum, but the
coefficients should be explicit.

The general solution is f(x, t) =
∑

n(an cos(nπt) + bn sin(nπt)) sin(nπx).
At t = 0 we have f0(x) =

∑

an sin(nπx), so an = n−3, and g0(x) =
∑

nπbn sin(nπx), so bn = 2n−3. Thus our solution is

f(x, t) =
∞
∑

n=1

n−3(cos(nπt) + 2 sin(nπt)) sin(nπx)

b) At what time(s) will f(x, t) = f0(x) (for all x)?

We need to have cos(nπt)+2 sin(nπt) = 1 for all values of n. There are two
values of θ for which cos(θ) + 2 sin(θ) = 1, namely θ = 0 and θ = 2 tan−1(2).
However, the second solution gives different values of t for each value of n, so
the only way to get it to work for all values of n is to have nπt be a multiple
of 2π, i.e., for t to be a multiple of 2. [Anybody who gets this solution gets
full credit; if you correctly analyzed the 2 tan−1(2) possibility you get extra
credit]

10. Consider the periodic function, with period 1, that equals the following
on the interval [0, 1]:

f(x) =
{

1 if 1/4 < x < 3/4
0 otherwise
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a) At what rate do the Fourier coefficients f̂n decay with n? (This should
require almost no calculation).

Since f(x) is discontinuous, the coefficients decay as n−1.

b) Compute f̂n for all n. [Does your answer agree with (a)?]

For n = 0, we have f̂0 =
∫ 1
0 f(x)dx = 1/2. For all other values of n we

have f̂n =
∫ 1
0 f(x) exp(−2πnx)dx =

∫ 3/4
1/4 exp(−2πinx)dx = ie−2πinx

2πn
|3/4
1/4. Since

exp(−2πinx) is periodic with period 1, this equals ie−2πinx

2πn
|−1/4
1/4 = 1

2πn
(einπ/2−

e−inπ/2) = − sin(nπ/2)/nπ. This equals 0 if n is even, and equals (−1)k+1/nπ
if n = 2k + 1.

c) Compute
∑

∞

n=−∞
|f̂n|2.

The easy way to do this (and the intended way!) is to note that
∑ |f̂n|2 =

〈f |f〉 =
∫ 1
0 f(x)2dx = 1/2. A similar problem appeared in a practice final.

The hard way is to do the infinite sum directly from (b) using the identity
∑

n>0 odd n−2 = π2/8, which you derived in the homework.

6


