
M346 Final Exam, May 19, 2009

1. For each of these collections B of vectors in a vector space V , indicate (with
explanation) whether B is linearly independent, spans V , both, or neither.

a) In R3, B =


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This boils down to row-reducing the matrix A =







1 3 2 1
2 6 4 3
3 10 5 4





 to







1 0 5 0
0 1 −1 0
0 0 0 1





. The rank is 3, so the vectors span R3 but are linearly

dependent.

b) In R4, B =


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This boils down to row-reducing AT . The rank is still 3, so the vectors
are linearly independent but do not span.

c) In R2[t], B = {1 + 2t + 3t2, 3 + 6t + 10t2, 1 + 3t + 4t2}.

Working in the standard basis, this boils down to row-reducing







1 3 1
2 6 3
3 10 4





,

in other words A with the third column removed. The result is the identity
matrix, showing that B is linearly independent, spans, and hence is a basis
for R2[t].

d) In R3[t], B = {1 + 2t + 3t2, 3 + 6t + 10t2, 1 + 3t + 4t2}.
These are the same vectors as in part (c), so they are still linearly inde-

pendent, but now they are in a bigger space and don’t span.

2. In R2[t], consider the bases E = {1, t, t2} and B = {2, 2t + 5, t2 + 5t + 7},
and the linear transformation L : R2[t] → R2[t], Lp(t) = p(t) + p′(t).

a) Find the change-of-basis matrices PBE and PEB.

PEB =







2 5 7
0 2 5
0 0 1





. By row-reduction, we compute PBE = P−1
EB =









1/2 −5/4 11/4
0 1/2 −5/2
0 0 1





.

b) If p(t) = t2 + 9t + 23, find [p]B.

[p]B = PBE [p]E =







3
2
1





. You should check that p(t) really is

3(2) + 2(2t + 5) + (t2 + 5t + 7).

c) Find [L]E and [L]B.

[L]E =







1 1 0
0 1 2
0 0 1





 and [L]B =







1 1 0
0 1 1
0 0 1





. The latter can be obtained

either from PBE [L]EPEB or from the fact that each basis element is the deriva-
tive of the one after it, so L − I is just a shift downwards.

3. (a) Find a 2 × 2 matrix A whose eigenvalues are −30 and 40 and whose

corresponding eigenvectors are
(

4
1

)

and
(

2
3

)

. [Hint: the final answer should

only involve integers, although you may see some fractions along the way.]

P =
(

4 2
1 3

)

, D =
(−30 0

0 40

)

, and A = PDP−1 =
(−44 56
−21 54

)

.

(b) What are the eigenvalues of A2 − 10A?

Since the eigenvalues of A are −30 and 40, the eigenvalues of A2 − 10A
must be (−30)2 − 10(−30) = 1200 and 402 − 10(40) = 1200.

c) Compute A2 − 10A. (No, you do NOT need a calculator to do this.)

Since A2 − 10A is diagonalizable with both eigenvalues equal to 1200,

A2 − 10A =
(

1200 0
0 1200

)

. You could get this result by multiplying out A2

and subtracting 10A, but that would be very, very painful.

4. a) Find the eigenvalues and eigenvectors of A =
(

9 −7
4 −2

)

.

Since the trace is 7 and the determinant is 10, the eigenvalues are 2 and

5. By row-reduction, the eigenvectors are
(

1
1

)

and
(

7
4

)

.

b) Compute eiπA. [The final answer involves rational numbers with small
denominators.]

e2πi = 1 and e5πi = −1, so we are looking for a matrix with eigenvectors



(

1
1

)

and
(

7
4

)

and eigenvalues 1 and −1. This is
(

1 7
1 4

) (

1 0
0 −1

) (

1 7
1 4

)−1

=
(−11/3 14/3

−8/3 11/3

)

.

5. Consider the system of differential equations

dx1

dt
= x1

dx2

dt
= 2x1 + x2 + 2x3

dx3

dt
= 3x1 + 2x2 + x3

a) Find the general solution.

Our matrix is







1 0 0
2 1 2
3 2 1





 with eigenvalues 1, 3 and −1 and eigenvectors

(2,−3,−2)T , (0, 1, 1)T and (0, 1,−1)T . The general solution is then

x(t) = c1e
t







2
−3
−2





 + c2e
3t







0
1
1





 + c3e
−t







0
1
−1





 ,

where c1, c2 and c3 are arbitrary constants.

b) If x(0) =







2
−1
−2





, what is the limiting value of x1(t)
x2(t)

as t → ∞?

The dominant eigenvector is λ2 = 3, and a quick calculation shows that
c2 6= 0. This means that x(t) asymptotically points in the b2 direction, with
x1/x2 approaching 0/1 = 0.

6. Use the Gram Schmidt process to convert the following basis for a 3-
dimensional subspace of R4 into an orthonormal basis for that subspace.

x1 = (1, 1,−1, 0)T , x2 = (4, 5, 0, 4)T , x3 = (−2, 3,−2,−7)T .

|y1〉 = |x1〉 = (1, 1,−1, 0)T .

|y2〉 = |x2〉 − 〈y1|x2〉
〈y1|y1〉

|y1〉 = x2 − 3y1 = (1, 2, 3, 4)T .

|y3〉 = |x3〉 − 〈y1|x3〉
〈y1|y1〉

|y1〉 − 〈y2|x3〉
〈y2|y2〉

|y2〉 = x3 − y1 + y2 = (−2, 4, 2,−3)T .



Normalizing, we get z1 = (1, 1,−1, 0)T /
√

3, z2 = (1, 2, 3, 4)T /
√

30, and
z3 = (−2, 4, 2,−3)T /

√
33.

7. Find all least-squares solutions to the system of equations

x1 + 2x2 = −3

3x1 + 2x2 = 7

2x1 − 2x2 = 14

4x1 − x2 = 5

A =











1 2
3 2
2 −2
4 −1











, b =











−3
7
14
5











, AT A =
(

30 0
0 13

)

and ATb =
(

66
−25

)

,

so the unique solution is x1 = 66/30 = 11/5 and x2 = −25/13. [This is the
only place in the test where the denominators exceed 10.]

8. Consider a wave f(x, t) on the interval [0, 1], with Dirichlet boundary
conditions (f(0, t) = f(1, t) = 0 for all time), moving with velocity 1. The
initial condition is f(x, 0) = sin(πx) + sin(2πx) and ∂f

∂t
(x, 0) = 0.

a) Find f(x, t) for all x and all t.

This problem can be done either with traveling waves or with standing
waves. Standing waves are much easier, but I’ll show both ways of doing it.

In terms of standing waves, f(x, t) =
∑

n sin(nπx)[an cos(nπt)+bn sin(nπt)].
From the initial conditions we get a1 = a2 = 1, all other a’s are zero, and
all b’s are zero. In other words, f(x, t) = sin(πx) cos(πt) + sin(2πx) cos(2πt).
That’s the sum of two standing waves with different frequency.

In terms of traveling waves, we get h1(x) = h2(x) = f(x, 0)/2, so f(x, t) =
1
2
[sin(π(x− t))+sin(2π(x− t))+sin(π(x+ t))+sin(2π(x+ t)). Several people

got this right, but nobody was able to take this result and solve part (b) with
it.

b) Sketch f(x, t) at times t = 1/4, t = 1/2, t = 1, t = 3/2, and t = 2. I’ve
sketched f(0, t) on the board to get you started.

At t = 1/4, cos(πt) =
√

2/2 and cos(2πt) = 0, so f(x, 1/4) =
√

2 sin(πx)/2.

At t = 1/2, cos(πt) = 0 and cos(2πt) = −1, so f(x, 1/2) = − sin(2πx).

At t = 1, cos(πt) = −1 and cos(2πt) = 1, so f(x, 1) = − sin(πx) +
sin(2πx).



At t = 3/2, cos(πt) = 0 and cos(2πt) = −1, so f(x, 3/2) = − sin(2πx),
just as at t = 1/2.

At t = 2, cos(πt) = 1 and cos(2πt) = 1, so f(x, 2) = sin(πx) + sin(2πx).

I can’t draw the pictures online, but the picture at t = 1 looks just like
the picture at t = 0, only rotated by 180 degrees, with a small positive bump
on the left and a large negative bump on the right. At t = 2 the picture is
just like at t = 0, with a large positive bump on the left and a small negative
bump on the right.

You can also get these results using traveling waves, that is by taking
f(x, 0), shifting it a distance t to the left and t to the right, adding the
shifted waves, and dividing by 2. It works, but it’s a lot harder that way.


