M346 Final Exam, May 19, 2009

1. For each of these collections \mathcal{B} of vectors in a vector space V, indicate (with explanation) whether \mathcal{B} is linearly independent, spans V, both, or neither.
a) In $R^{3}, \mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ 6 \\ 10\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 5\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)\right\}$.
b) In $R^{4}, \mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 6 \\ 4 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ 10 \\ 5 \\ 4\end{array}\right)\right\}$.
c) In $R_{2}[t], \mathcal{B}=\left\{1+2 t+3 t^{2}, 3+6 t+10 t^{2}, 1+3 t+4 t^{2}\right\}$.
d) In $R_{3}[t], \mathcal{B}=\left\{1+2 t+3 t^{2}, 3+6 t+10 t^{2}, 1+3 t+4 t^{2}\right\}$.
2. In $R_{2}[t]$, consider the bases $\mathcal{E}=\left\{1, t, t^{2}\right\}$ and $\mathcal{B}=\left\{2,2 t+5, t^{2}+5 t+7\right\}$, and the linear transformation $L: R_{2}[t] \rightarrow R_{2}[t], L \mathbf{p}(t)=\mathbf{p}(t)+\mathbf{p}^{\prime}(t)$.
a) Find the change-of-basis matrices $P_{\mathcal{B E}}$ and $P_{\mathcal{E B}}$.
b) If $\mathbf{p}(t)=t^{2}+9 t+23$, find $[\mathbf{p}]_{\mathcal{B}}$.
c) Find $[L]_{\mathcal{E}}$ and $[L]_{\mathcal{B}}$.
3. (a) Find a 2×2 matrix A whose eigenvalues are -30 and 40 and whose corresponding eigenvectors are $\binom{4}{1}$ and $\binom{2}{3}$. [Hint: the final answer should only involve integers, although you may see some fractions along the way.]
(b) What are the eigenvalues of $A^{2}-10 A$?
c) Compute $A^{2}-10 A$. (No, you do NOT need a calculator to do this.)
4. a) Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}9 & -7 \\ 4 & -2\end{array}\right)$.
b) Compute $e^{i \pi A}$. [The final answer involves rational numbers with small denominators.]
5. Consider the system of differential equations

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1} \\
\frac{d x_{2}}{d t} & =2 x_{1}+x_{2}+2 x_{3} \\
\frac{d x_{3}}{d t} & =3 x_{1}+2 x_{2}+x_{3}
\end{aligned}
$$

a) Find the general solution.
b) If $\mathbf{x}(0)=\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right)$, what is the limiting value of $\frac{x_{1}(t)}{x_{2}(t)}$ as $t \rightarrow \infty$?
6. Use the Gram Schmidt process to convert the following basis for a 3dimensional subspace of R^{4} into an orthonormal basis for that subspace.

$$
\mathbf{x}_{1}=(1,1,-1,0)^{T}, \mathbf{x}_{2}=(4,5,0,4)^{T}, \mathbf{x}_{3}=(-2,3,-2,-7)^{T} .
$$

7. Find all least-squares solutions to the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =-3 \\
3 x_{1}+2 x_{2} & =7 \\
2 x_{1}-2 x_{2} & =14 \\
4 x_{1}-x_{2} & =5
\end{aligned}
$$

8. Consider a wave $f(x, t)$ on the interval $[0,1]$, with Dirichlet boundary conditions $(f(0, t)=f(1, t)=0$ for all time), moving with velocity 1 . The initial condition is $f(x, 0)=\sin (\pi x)+\sin (2 \pi x)$ and $\frac{\partial f}{\partial t}(x, 0)=0$.
a) Find $f(x, t)$ for all x and all t.
b) Sketch $f(x, t)$ at times $t=1 / 4, t=1 / 2, t=1, t=3 / 2$, and $t=2$. I've sketched $f(0, t)$ on the board to get you started.
