M427J: Differential Equations with Linear Algebra Homework # 01 Handout: 02/17/2017, Tuesday Due: 02/25/2017, Wednesday

• Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.

• Assignments for Section 1.1: Differential Equations and Their Solutions

In each of Problems 1 through 6 determine the order of the given differential equation; also state whether the equation is linear or nonlinear.

1.
$$t^{2}\frac{d^{2}y}{dt^{2}} + t\frac{dy}{dt} + 2y = \sin t$$

3.
$$\frac{d^{4}y}{dt^{4}} + \frac{d^{3}y}{dt^{3}} + \frac{d^{2}y}{dt^{2}} + \frac{dy}{dt} + y = 1$$

5.
$$\frac{d^{2}y}{dt^{2}} + \sin(t+y) = \sin t$$

6.
$$\frac{d^{3}y}{dt^{3}} + t\frac{dy}{dt} + (\cos^{2}t)y = t^{3}$$

In each of Problems 7 through 10 verify that each given function is a solution of the differential equation.

7.
$$y'''' + 4y''' + 3y = t;$$
 $y_1(t) = t/3,$ $y_2(t) = e^{-t} + t/3$
8. $2t^2y'' + 3ty' - y = 0,$ $t > 0;$ $y_1(t) = t^{1/2},$ $y_2(t) = t^{-1}$
9. $t^2y'' + 5ty' + 4y = 0,$ $t > 0;$ $y_1(t) = t^{-2},$ $y_2(t) = t^{-2} \ln t$
10. $y'' + y = \sec t,$ $0 < t < \pi/2;$ $y(t) = (\cos t) \ln \cos t + t \sin t$

In each of Problems 11 through 14 determine the order of the given partial differential equation; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by subscripts.

11.
$$u_{xx} + u_{yy} + u_{zz} = 0$$

13. $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = 0$
14. $u_t + uu_x = 1 + u_{xx}$

In each of Problems 15 through 18 verify that each given function is a solution of the partial differential equation. λ and α are constants.

15.
$$u_{xx} + u_{yy} = 0;$$
 $u_1(x, y) = \cos x \cosh y,$ $u_2(x, y) = \ln(x^2 + y^2)$
16. $\alpha^2 u_{xx} = u_t;$ $u_1(x, t) = e^{-\alpha^2 t} \sin x,$ $u_2(x, t) = e^{-\alpha^2 \lambda^2 t} \sin \lambda x$
17. $a^2 u_{xx} = u_{tt};$ $u_1(x, t) = \sin \lambda x \sin \lambda at,$ $u_2(x, t) = \sin(x - at),$
18. $\alpha^2 u_{xx} = u_t;$ $u(x, t) = (\pi/t)^{1/2} e^{-x^2/4\alpha^2 t},$ $t > 0$

• Assignments for Section 1.2: The First-Order Linear ODEs

In each of Problems 1 through 7 find the solution of the initial value problem.

1.
$$y' - y = 2te^{2t}$$
, $y(0) = 1$
2. $y' + 2y = te^{-2t}$, $y(1) = 0$
3. $ty' + 2y = t^2 - t + 1$, $y(1) = 1/2$, $t > 0$
4. $y' + (2/t)y = (\cos t)/t^2$, $y(\pi) = 0$, $t > 0$
5. $y' - 2y = e^{2t}$, $y(0) = 2$
6. $ty' + 2y = \sin t$, $y(\pi/2) = 1$, $t > 0$
7. $t^3y' + 4t^2y = e^{-t}$, $y(-1) = 0$, $t < 0$

8. Find the value of y_0 for which the solution of the initial value problem

$$y' - y = 1 + 3\sin t, \qquad y(0) = y_0$$

remains finite as $t \to \infty$.

9. Variation of Parameters. Consider the following method of solving the general linear equation of first order:

$$y' + p(t)y = g(t). \tag{I}$$

(a) If g(t) = 0 for all t, show that the solution is

$$y = A \exp\left[-\int p(t)dt\right],\tag{II}$$

where A is a constant.

(b) If g(t) is not everywhere zero, assume that the solution of equation (I) if of the form

$$y = A(t) \exp\left[-\int p(t)dt\right],\tag{III}$$

where A is now a function of t. By substituting for y in the given differential equation, show that A(t) must satisfy the condition

$$A'(t) = g(t) \exp\left[\int p(t)dt\right].$$
 (IV)

(c) Find A(t) from equation (IV). Then substitute for A(t) in equation (III) and determine y(t). This technique is known as the method of variation of parameters.