M427J: Differential Equations with Linear Algebra Homework \# 01

Handout: 02/17/2017, Tuesday
Due: 02/25/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.

- Assignments for Section 1.1: Differential Equations and Their Solutions

In each of Problems 1 through 6 determine the order of the given differential equation; also state whether the equation is linear or nonlinear.

1. $t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+2 y=\sin t$
2. $\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}$
3. $\frac{d^{4} y}{d t^{4}}+\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=1$
4. $\frac{d y}{d t}+t y^{2}=0$
5. $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t$
6. $\frac{d^{3} y}{d t^{3}}+t \frac{d y}{d t}+\left(\cos ^{2} t\right) y=t^{3}$

In each of Problems 7 through 10 verify that each given function is a solution of the differential equation.

$$
\begin{aligned}
& \text { 7. } \quad y^{\prime \prime \prime \prime}+4 y^{\prime \prime \prime}+3 y=t ; \quad y_{1}(t)=t / 3, \quad y_{2}(t)=e^{-t}+t / 3 \\
& \text { 8. } \quad 2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0 ; \quad y_{1}(t)=t^{1 / 2}, \quad y_{2}(t)=t^{-1} \\
& \text { 9. } t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0, t>0 ; \quad y_{1}(t)=t^{-2}, \quad y_{2}(t)=t^{-2} \ln t \\
& \text { 10. } y^{\prime \prime}+y=\sec t, 0<t<\pi / 2 ; \quad y(t)=(\cos t) \ln \cos t+t \sin t
\end{aligned}
$$

In each of Problems 11 through 14 determine the order of the given partial differential equation; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by subscripts.
11. $u_{x x}+u_{y y}+u_{z z}=0$
12. $u_{x x}+u_{y y}+u u_{x}+u u_{y}+u=0$
13. $u_{x x x x}+2 u_{x x y y}+u_{y y y y}=0$
14. $u_{t}+u u_{x}=1+u_{x x}$

In each of Problems 15 through 18 verify that each given function is a solution of the partial differential equation. λ and α are constants.

$$
\begin{array}{lll}
\text { 15. } & u_{x x}+u_{y y}=0 ; & u_{1}(x, y)=\cos x \cosh y, \quad u_{2}(x, y)=\ln \left(x^{2}+y^{2}\right) \\
\text { 16. } & \alpha^{2} u_{x x}=u_{t} ; & u_{1}(x, t)=e^{-\alpha^{2} t} \sin x, \quad u_{2}(x, t)=e^{-\alpha^{2} \lambda^{2} t} \sin \lambda x \\
\text { 17. } & a^{2} u_{x x}=u_{t t} ; & u_{1}(x, t)=\sin \lambda x \sin \lambda a t, \quad u_{2}(x, t)=\sin (x-a t), \\
\text { 18. } & \alpha^{2} u_{x x}=u_{t} ; & u(x, t)=(\pi / t)^{1 / 2} e^{-x^{2} / 4 \alpha^{2} t}, t>0
\end{array}
$$

- Assignments for Section 1.2: The First-Order Linear ODEs

In each of Problems 1 through 7 find the solution of the initial value problem.

$$
\begin{aligned}
& \text { 1. } y^{\prime}-y=2 t e^{2 t}, \quad y(0)=1 \\
& \text { 2. } y^{\prime}+2 y=t e^{-2 t}, \quad y(1)=0 \\
& \text { 3. } t y^{\prime}+2 y=t^{2}-t+1, \quad y(1)=1 / 2, \quad t>0 \\
& \text { 4. } y^{\prime}+(2 / t) y=(\cos t) / t^{2}, \quad y(\pi)=0, \quad t>0 \\
& \text { 5. } y^{\prime}-2 y=e^{2 t}, \quad y(0)=2 \\
& \text { 6. } t y^{\prime}+2 y=\sin t, \quad y(\pi / 2)=1, \quad t>0 \\
& \text { 7. } t^{3} y^{\prime}+4 t^{2} y=e^{-t}, \quad y(-1)=0, \quad t<0
\end{aligned}
$$

8. Find the value of y_{0} for which the solution of the initial value problem

$$
y^{\prime}-y=1+3 \sin t, \quad y(0)=y_{0}
$$

remains finite as $t \rightarrow \infty$.
9. Variation of Parameters. Consider the following method of solving the general linear equation of first order:

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) . \tag{I}
\end{equation*}
$$

(a) If $g(t)=0$ for all t, show that the solution is

$$
\begin{equation*}
y=A \exp \left[-\int p(t) d t\right] \tag{II}
\end{equation*}
$$

where A is a constant.
(b) If $g(t)$ is not everywhere zero, assume that the solution of equation (II) if of the form

$$
\begin{equation*}
y=A(t) \exp \left[-\int p(t) d t\right] \tag{III}
\end{equation*}
$$

where A is now a function of t. By substituting for y in the given differential equation, show that $A(t)$ must satisfy the condition

$$
\begin{equation*}
A^{\prime}(t)=g(t) \exp \left[\int p(t) d t\right] \tag{IV}
\end{equation*}
$$

(c) Find $A(t)$ from equation (IV). Then substitute for $A(t)$ in equation (III) and determine $y(t)$. This technique is known as the method of variation of parameters.

