M427J: Differential Equations with Linear Algebra Homework \# 02
 Handout: 01/24/2016, Tuesday
 Due: 02/01/2016, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 1.4 (Separable Equations):

In each of the following problems solve the given differential equation.

$$
\begin{array}{ll}
\text { 1. } & y^{\prime}+y^{2} \sin x=0 \\
\text { 2. } & y^{\prime}=\left(3 x^{2}-1\right) /(3+2 y) \\
\text { 3. } & x y^{\prime}=\left(1-y^{2}\right)^{1 / 2} \\
\text { 4. } & \frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}}
\end{array}
$$

5. Solve the initial value problem

$$
y^{\prime}=3 x^{2} /\left(3 y^{2}-4\right), \quad y(1)=0
$$

6. Solve the initial value problem

$$
y^{\prime}=2 y^{2}+x y^{2}, \quad y(0)=1
$$

and determine where the solution attains its minimum value.

Homogeneous Equations. If the right hand side of the equation $d y / d x=f(x, y)$ can be expressed as a function of the ratio y / x only, then the equation is said to be homogeneous. Such equations can always be transformed into separable equations by a change of the dependent variable.
7. Consider the equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y-4 x}{x-y} \tag{1}
\end{equation*}
$$

(a) Show that equation (1) can be rewritten as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{(y / x)-4}{1-(y / x)} \tag{2}
\end{equation*}
$$

thus equation (1) is homogeneous.
(b) Introduce a new dependent variable v so that $v=y / x$, or $y=x v(x)$. Express $d y / d x$ in terms of x, v and $d v / d x$.
(c) Replace y and $d y / d x$ in equation (2) by the expressions from part (b) that involve v and $d v / d x$. Show that the resulting differential equation is

$$
\begin{equation*}
v+x \frac{d v}{d x}=\frac{v-4}{1-v}, \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
x \frac{d v}{d x}=\frac{v^{2}-4}{1-v} \tag{4}
\end{equation*}
$$

Observe that equation (4) is separable.
(d) Solve equation (4), obtaining v implicitly in terms of x.
(e) Find the solution of equation (1) by replacing v by y / x in the solution in part (d).

The method outlined in Problem 7 can be used for any homogeneous equation. That is, the substitution $y=x v(x)$ transforms a homogeneous equation into a separable equation. The latter equation can be solved by direct integration, and then replacing v by y / x gives the solution to the original equation. In each of Problems 8 through 9:
(a) Show that the given equation is homogeneous.
(b) Solve the differential equation.

$$
\text { 8. } \frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}} \quad \text { 9. } \frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}
$$

- Assignments for Section 1.9 (Exact Equations I):

Determine whether each of the following equations is exact. If it is exact, find the solution.

$$
\begin{aligned}
& \text { 1. } \quad(2 x+4 y)+(2 x-2 y) y^{\prime}=0 \\
& \text { 2. } \\
& \text { 3. } \left.2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0 \\
& \text { 3. } \quad \frac{d y}{d x}=-\frac{a x-b y}{b x-c y} \\
& \text { 4. } \quad\left(e^{x} \sin y+3 y\right) d x-\left(3 x-e^{x} \sin y\right) d y=0 \\
& \text { 5. } \quad(y / x+6 x) d x+(\ln x-2) d y=0, \quad x>0 \\
& \text { 6. } \quad \frac{x d x}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=0
\end{aligned}
$$

In each of the following problems find the value of b for which the given equation is exact, and then solve it using that value of b.

> 7. $\quad\left(x y^{2}+b x^{2} y\right) d x+(x+y) x^{2} d y=0$
> 8. $\quad\left(y e^{2 x y}+x\right) d x+b x e^{2 x y} d y=0$

