M427J: Differential Equations with Linear Algebra Homework \# 04
 Handout: 02/07/2017, Tuesday
 Due: 02/15/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 2.1: The Solutions to the Linear Homogeneous Equations

In each of the following problems find the Wronskian of the given pair of functions.

$$
\text { 1. } x, \quad x e^{x} \quad \text { 2. } \cos ^{2} \theta, \quad 1+\cos 2 \theta
$$

In each of the following problems, determine the longest interval in which the given initial value problem is certain to have a unique twice differentiable solution. Do not attempt to find the solution.

$$
\left.\begin{array}{lc}
\text { 3. }(t-1) y^{\prime \prime}-3 t y^{\prime}+4 y=\sin t, & y(-2)=2, \\
\text { 4. }(x-3) y^{\prime \prime}+x y^{\prime}+(\ln |x|) y=0, & y(1)=0,
\end{array} y^{\prime}(1)=1\right)
$$

5. If the Wronskian W of f and g is $3 e^{4 t}$, and if $f(t)=e^{2 t}$, find $g(t)$.
6. If $W(f, g)$ is the Wronskian of f and g, and if $u=2 f-g, v=f+2 g$, find the Wronskian $W(u, v)$ of u and v in terms of $W(f, g)$.

- Assignments for Section 2.2: The Homogeneous Equations with Constant Coefficients (I)

In each of the problems below find the general solution of the given differential equation.

$$
\begin{array}{lll}
\text { 1. } 6 y^{\prime \prime}-y^{\prime}-y=0 & \text { 2. } \quad y^{\prime \prime}+5 y^{\prime}=0 & \text { 3. } y^{\prime \prime}-9 y^{\prime}+9 y=0
\end{array}
$$

In each of the following problems find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as t increases.

$$
\begin{array}{lc}
\text { 4. } y^{\prime \prime}+y^{\prime}-2 y=0, & y(0)=1,
\end{array} \quad y^{\prime}(0)=1 ~(0)=4, \quad y^{\prime}(0)=0
$$

7. Find a differential equation whose general solution is $y=c_{1} e^{2 t}+c_{2} e^{-3 t}$.

In each of Problems 8 and 9 determine the value of α, if any, for which all solutions tend to zero as $t \rightarrow \infty$; also determine the value of α, if any, for which all (nonzero) solutions become unbounded as $t \rightarrow \infty$.

$$
\begin{aligned}
& \text { 8. } y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0 \\
& \text { 9. } y^{\prime \prime}+(3-\alpha) y^{\prime}-2(\alpha-1) y=0
\end{aligned}
$$

