M427J: Differential Equations with Linear Algebra Homework \# 06
 Handout: 02/28/2017, Tuesday
 Due: 03/08/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 2.4: The Nonhomogeneous Equations - The Method of Variation of Parameters

In each of the following problems, use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients.

$$
\text { 1. } y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t} \quad \text { 2. } 4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2}
$$

In each of the following problems, find the general solution of the given differential equation.
3. $y^{\prime \prime}+9 y=9 \sec ^{2} 3 t$,
$0<t<\pi / 6$
4. $y^{\prime \prime}+4 y=3 \csc 2 t, \quad 0<t<\pi / 2$

In each of Problems 14 through 16 verify that the given functions y_{1} and y_{2} satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation.

$$
\begin{aligned}
& \text { 5. } t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, \quad t>0 ; \quad y_{1}(t)=t, \quad y_{2}(t)=t e^{t} \\
& \text { 6. } t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, \quad t>0 ; \quad y_{1}(t)=1+t, \quad y_{2}(t)=e^{t} \\
& \text { 7. }(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{2} e^{-t}, \quad 0<t<1 ; \quad y_{1}(t)=e^{t}, \quad y_{2}(t)=t
\end{aligned}
$$

- Assignments for Section 2.8 (I\&II): Series Solution Near An Ordinary Point

In each of the following problem determine the radius of convergence of the given power series.

$$
\text { 1. } \sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n} \quad \text { 2. } \sum_{n=0}^{\infty} 2^{n} x^{n} \quad \text { 3. } \sum_{n=1}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n} \quad \text { 4. } \sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{n}}
$$

In each of the following problems,
(a) Seek power series solutions of the given differential equation about the given point x_{0}; find the recurrence relation.
(b) Find the first four terms in each of two solutions y_{1} and y_{2} (unless the series terminates sooner).
(c) By evaluating the Wrongkian $W\left(y_{1}, y_{2}\right)\left(x_{0}\right)$, show that y_{1} and y_{2} form a fundamental set of solutions.
(d) If possible, find the general term in each solution.

$$
\begin{array}{llll}
\text { 5. } y^{\prime \prime}-x y^{\prime}-y=0, & x_{0}=1 & \text { 6. }(1-x) y^{\prime \prime}+y=0, \quad x_{0}=0 & \\
\text { 7. } y^{\prime \prime}+x y^{\prime}+2 y=0, & x_{0}=0 & \text { 8. }\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0, & x_{0}=0 .
\end{array}
$$

In each of the following problems, determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the given differential equation.
9. $y^{\prime \prime}+4 y^{\prime}+6 x y=0 ; \quad x_{0}=0, \quad x_{0}=4$.
10. $\left(x^{2}-2 x-3\right) y^{\prime \prime}+x y^{\prime}+4 y=0 ; \quad x_{0}=4, \quad x_{0}=-4, \quad x_{0}=0$.
11. $\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 ; \quad x_{0}=0, \quad x_{0}=2$.
12. $x y^{\prime \prime}+y=0 ; \quad x_{0}=1$.

