M427J: Differential Equations with Linear Algebra Homework \# 08
 Handout: 03/21/2017, Tuesday
 Due: 04/05/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 3.1: Matrices and Vectors

1. If

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -2 & 0 \\
3 & 2 & -1 \\
-2 & 0 & 3
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 3 & 3 \\
1 & 0 & 2
\end{array}\right), \quad \text { and } \mathbf{C}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 2 \\
0 & 1 & -1
\end{array}\right)
$$

verify that
(a) $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$
(b) $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
(c) $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
2. If

$$
\mathbf{x}=\left(\begin{array}{c}
2 \\
3 i \\
1-i
\end{array}\right) \text { and } \mathbf{y}=\left(\begin{array}{c}
-1+i \\
2 \\
3-i
\end{array}\right)
$$

find
(a) $\mathbf{x}^{T} \mathbf{y}$
(b) $\mathbf{y}^{T} \mathbf{y}$
(c) (\mathbf{x}, \mathbf{y})
(d) (\mathbf{y}, \mathbf{y})
3. If

$$
\mathbf{A}(t)=\left(\begin{array}{ccc}
e^{t} & 2 e^{-t} & e^{2 t} \\
2 e^{t} & e^{-t} & -e^{2 t} \\
-e^{t} & 3 e^{-t} & 2 e^{2 t}
\end{array}\right), \quad \text { and } \mathbf{B}(t)=\left(\begin{array}{ccc}
2 e^{t} & e^{-t} & 3 e^{2 t} \\
-e^{t} & 2 e^{-t} & e^{2 t} \\
3 e^{t} & -e^{-t} & -e^{2 t}
\end{array}\right)
$$

find
(a) $\mathbf{A}+3 \mathbf{B}$
(b) $\mathbf{A B}$
(c) $d \mathbf{A} / d t$

In each of Problems 4 and 5 verify that the given matrix satisfies the given differential equation.

$$
\begin{aligned}
& \text { 4. } \boldsymbol{\Psi}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \boldsymbol{\Psi}, \boldsymbol{\Psi}(t)=\left(\begin{array}{cc}
e^{-3 t} & e^{2 t} \\
-4 e^{-3 t} & e^{2 t}
\end{array}\right) . \\
& \text { 5. } \boldsymbol{\Psi}^{\prime}=\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \boldsymbol{\Psi}, \quad \boldsymbol{\Psi}(t)=\left(\begin{array}{ccc}
e^{t} & e^{-2 t} & e^{3 t} \\
-4 e^{t} & -e^{-2 t} & 2 e^{3 t} \\
-e^{t} & -e^{-2 t} & e^{3 t}
\end{array}\right) .
\end{aligned}
$$

- Assignments for Section 3.2: Linear Dependence of Vectors; Determinant

In each of the following problem determine whether the members of the given set of vectors are linearly independent. If they are linearly dependent, find a linear relation among them.

$$
\begin{array}{lll}
\text { 1. } \mathbf{x}^{(1)}=(1,1,0), & \mathbf{x}^{(2)}=(0,1,1), & \mathbf{x}^{(3)}=(1,0,1) . \\
\text { 2. } \mathbf{x}^{(1)}=(2,1,0), & \mathbf{x}^{(2)}=(0,1,0), & \mathbf{x}^{(3)}=(-1,2,0) . \\
\text { 3. } \mathbf{x}^{(1)}=(1,2,2,3), & \mathbf{x}^{(2)}=(-1,0,3,1), & \mathbf{x}^{(3)}=(-2,-1,1,0)
\end{array} \mathbf{x}^{(4)}=(-3,0,-1,3) . ~ l
$$

For each of the following matrix, compute the determinant.

$$
\text { 4. }\left(\begin{array}{rrr}
2 & -1 & 3 \\
2 & 3 & 1 \\
1 & 0 & -1
\end{array}\right) \quad \text { 5. }\left(\begin{array}{rrr}
1 & 3 & -2 \\
4 & 0 & -1 \\
-1 & 1 & 1
\end{array}\right) \quad \text { 6. }\left(\begin{array}{rrr}
-2 & 1 & 0 \\
1 & -2 & 3 \\
0 & -2 & 1
\end{array}\right)
$$

- Assignments for Section 3.3: System of Linear Equations

In each of the following problems transform the given equation into a system of first order equations.

$$
\text { 1. } u^{\prime \prime}+0.5 u^{\prime}+2 u=3 \sin t \quad \text { 2. } u^{(4)}-u=0
$$

3. Consider the linear homogeneous system

$$
\begin{aligned}
& x^{\prime}=p_{11}(t) x+p_{12}(t) y, \\
& y^{\prime}=p_{21}(t) x+p_{22}(t) y .
\end{aligned}
$$

Show that if $x=x_{1}(t), y=y_{1}(t)$ and $x=x_{2}(t), y=y_{2}(t)$ are two solutions of the given system, then $x=c_{1} x_{1}(t)+c_{2} x_{2}(t), y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is also a solution for any constants c_{1} and c_{2}. This is the principle of superposition.
4. Let $x=x_{1}(t), y=y_{1}(t)$ and $x=x_{2}(t), y=y_{2}(t)$ be any two solutions of the linear nonhomogeneous system

$$
\begin{aligned}
& x^{\prime}=p_{11}(t) x+p_{12}(t) y+g_{1}(t), \\
& y^{\prime}=p_{21}(t) x+p_{22}(t) y+g_{2}(t) .
\end{aligned}
$$

Show that $x=x_{1}(t)-x_{2}(t), y=y_{1}(t)-y_{2}(t)$ is a solution of the corresponding homogeneous system.

