M427J: Differential Equations with Linear Algebra Homework \# 10
 Handout: 04/11/2017, Tuesday
 Due: 04/19/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 3.6: Homogenous Linear System with Constant Coefficients (II)- Complex Eigenvalues

In each of the following problems express the general solution of the given system of equations in terms of real-valued functions.

1. $x^{\prime}=\left(\begin{array}{rr}-1 & -4 \\ 1 & -1\end{array}\right) \mathbf{x}$
2. $\mathrm{x}^{\prime}=\left(\begin{array}{ll}1 & -1 \\ 5 & -3\end{array}\right) \mathbf{x}$
3. $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 2 \\ -5 & -1\end{array}\right) \mathbf{x}$

- Assignments for Section 3.7: Homogenous Linear System with Constant Coefficients (III)- Repeated Eigenvalues

In each of the following problems find the general solution of the given system of equations.

$$
\text { 1. } \mathbf{x}^{\prime}=\left(\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right) \mathbf{x} \quad \text { 2. } \mathbf{x}^{\prime}=\left(\begin{array}{rr}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right) \mathbf{x} \quad \text { 3. } \mathbf{x}^{\prime}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right) \mathbf{x}
$$

(Hint for Prob. 3: one of the eigenvalues is -1)

- Assignments for Section 5.1 (I): Two-Point Boundary Value Problems

In each of the following problems, either solve the given boundary value problem or else show that it has no solution.

1. $y^{\prime \prime}+2 y=0 . \quad y^{\prime}(0)=1, \quad y^{\prime}(\pi)=0$
2. $y^{\prime \prime}+y=0 . \quad y^{\prime}(0)=1, \quad y(L)=0$
3. $y^{\prime \prime}+2 y=x . \quad y(0)=0, \quad y(\pi)=0$
4. $y^{\prime \prime}+4 y=\sin x, \quad y(0)=0, \quad y(\pi)=0$
