M427J: Differential Equations with Linear Algebra
 Homework \# 11
 Handout: 04/18/2017, Tuesday
 Due: 04/26/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Monday in the Problem Session. Note that no late homework will be accepted.

- Assignments for Section 5.1 (II): Eigenvalue Problems

In each of the following problems, find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are real.

1. $y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(\pi)=0$
2. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(\pi)=0$
3. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$
4. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(L)=0$

- Assignments for Section 5.2: Fourier Series

In each of the following problems, determine whether the given function is periodic. If so, find its fundamental period.

1. $\cos 2 \pi x$
2. $\sin \pi x / L$
3. $f(x)= \begin{cases}0, & 2 n-1 \leq x<2 n \\ 4, & 2 n \leq x<2 n+1\end{cases}$
$n=0, \pm 1, \pm 2, \ldots$

In each of Problem 4 through 6:
(a) Sketch the graph of the given function for three periods.
(b) Find the Fourier series for the given function.
4. $f(x)=-x, \quad-L \leq x<L ; \quad f(x+2 L)=f(x)$
5. $f(x)=\left\{\begin{array}{ll}x, & -\pi \leq x<0 \\ 0, & 0 \leq x<\pi ;\end{array} \quad f(x+2 \pi)=f(x)\right.$
6. $f(x)=\left\{\begin{array}{ll}x+1, & -1 \leq x<0 \\ 1-x, & 0 \leq x<1 ;\end{array} \quad f(x+2)=f(x)\right.$

In each of Problem 7 through 9:
(a) Find the Fourier series for the given function.
(b) Sketch the graph of the Fourier series (where they converge) for three periods.
7. $f(x)=\left\{\begin{array}{lll}0, & -\pi \leq x<0 \\ x, & 0 \leq x<\pi & \text { 8. } f(x)=1-x^{2},\end{array}-1 \leq x<1 \quad\right.$ 9. $f(x)= \begin{cases}0, & -1 \leq x<0 \\ x^{2}, & 0 \leq x<1\end{cases}$
10. Find the solution of the initial value problem

$$
y^{\prime \prime}+\omega^{2} y=\sin n t, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where n is a positive integer and $\omega^{2} \neq n^{2}$. What happens if $\omega^{2}=n^{2}$?

