M427J: Differential Equations with Linear Algebra Homework \# 12
 Handout: 04/25/2017, Tuesday
 Due: 05/03/2017, Wednesday

- Submission: Please make your homework neat and STAPLED. You have to submit your homework Wednesday in the Problem Session. Note that no late homework will be accepted.
- Assignments for Section 5.3: The Even and Odd Functions

In each of the following problems determine whether the given function is even, odd, or neither.

$$
\text { 1. } x^{3}-2 x+1 \quad \text { 2. } \tan 2 x
$$

In each of the following problems a function f is given on an interval of length L. In each case sketch the graphs of the even and odd extensions of f of period $2 L$.
3. $f(x)= \begin{cases}0, & 0 \leq x<1 \\ x-1, & 1 \leq x<2\end{cases}$
4. $f(x)=x-3, \quad 0<x<4$

In each of the following problems find the required Fourier series for the given function, and sketch the graph of the function to which the series converges over three periods.
5. $f(x)=\left\{\begin{array}{ll}1, & 0<x<1 \\ 0, & 1<x<2 ;\end{array} \quad\right.$ cosine series, period 4
6. $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x<1 \\ 1, & 1 \leq x<2\end{array} \quad\right.$ sine series, period 4

- Assignments for Section 5.4: Separition of Varibles

In each of the following problems, determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations.

$$
\begin{array}{lll}
\text { 1. } t u_{x x}+x u_{t}=0 & \text { 2. }\left[p(x) u_{x}\right]_{x}-r(x) u_{t t}=0 & \text { 3. } u_{x x}+u_{y y}+x u=0
\end{array}
$$

4. Find the solution of the heat conduction problem

$$
\begin{aligned}
& 100 u_{x x}=u_{t}, \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u(1, t)=0, \quad t>0 \\
& u(x, 0)=\sin 2 \pi x-\sin 5 \pi x, \quad 0 \leq x \leq 1
\end{aligned}
$$

5. Find the solution of the heat conduction problem

$$
\begin{aligned}
& u_{x x}=4 u_{t}, \quad 0<x<2, \quad t>0 \\
& u(0, t)=0, \quad u(2, t)=0, \quad t>0 \\
& u(x, 0)=2 \sin (\pi x / 2)-\sin \pi x+4 \sin 2 \pi x, \quad 0 \leq x \leq 2
\end{aligned}
$$

6. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{aligned}
& u(0, y)=0, \quad u(a, y)=0, \quad 0<y<b \\
& u(x, 0)=h(x), \quad u(x, b)=0, \quad 0 \leq x \leq a
\end{aligned}
$$

