M427J: Differential Equations with Linear Algebra

Review 2

1. Nonhomogeneous 2nd-order Equations

Consider $y'' + p(t)y' + q(t)y = g(t)$

solution $y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t)$

\uparrow

Solution of the one particular corresponding homogeneous eqn

nonhomogeneous eqn

1. Method of Undetermined Coefficients

A). main principle: guess y_p the same format of $g(t)$

B). for $g(t) = \cos bt$ or $\sin bt$, guess $A\cos bt + B\sin bt$

C). for $g(t) = P(x) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$, guess full polynomial $y_p = A_0 t^n + A_1 t^{n-1} + \cdots + A_{n-1} t + A_0$

D). If the guess is a homogeneous solution, multiply the guess by t.

\ominus
F) plug the particular solution y_p into the original eqn and determine the coefficients.

Variation of Parameters

$$y'' + p(t)y' + q(t)y = g(t)$$

Let y_1 and y_2 be two independent solutions of the corresponding homogeneous equation.

We look for the solution of the form

$$y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

$$\Rightarrow \begin{cases}
 u_1'y_1 + u_2'y_2 = 0 \\
 u_1'y_1' + u_2'y_2' = g(t)
\end{cases}$$

$$\Rightarrow \begin{cases}
 u_1(t) = -\frac{y_2(t)g(t)}{W[y_1,y_2](t)} \\
 u_2(t) = \frac{y_1(t)g(t)}{W[y_1,y_2](t)}
\end{cases}$$

$$\Rightarrow \begin{align*}
 y_1(t) &= -\int \frac{y_2g}{W} \, dt + C_1 \\
 y_2(t) &= \int \frac{y_1g}{W} \, dt + C_2
\end{align*}$$

$$\Rightarrow y_p(t) = -y_1\int \frac{y_2g}{W[y_1,y_2](t)} \, dt + y_2\int \frac{y_1g}{W[y_1,y_2](t)} \, dt$$
2. **Series Solution of Second Order Linear Eqn**

1. **Series Solution Near an Ordinary Point**

 \[P(x)y''(x) + Q(x)y'(x) + R(x)y(x) = 0 \]

 A point \(x_0 \) for which \(P(x_0) \neq 0 \) is called an ordinary point of the ODE.

 * Set \(y(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n \)

 * Plug \(y(x), y'(x), y''(x) \) into eqn

 * Get recurrence relation for coefficient

 * Get general form of the coefficients from the recurrence relation. (If there is no general form of the coefficients, compute 4 terms)

 * Compute the radius of convergence by using ratio test. (If no general form, use theorem)

2. **Series Solution Near a Regular Singular Point**

 \[P(x)y'' + Q(x)y' + R(x)y = 0 \]
If \(P(x_0) = 0 \)

and \(\lim_{x \to x_0} \left(x-x_0 \right) \frac{Q(x)}{P(x)} \) is finite

Then \(x_0 \) is a regular singular point of the ODE.

1. Let \(y(x) = (x-x_0)^r \sum_{n=0}^{\infty} a_n (x-x_0)^n \) \(\left(a_0 \neq 0 \right) \)

2. plug \(y(x) \), \(y'(x) \) and \(y''(x) \) into the eqn.

3. shift the index, organize the terms

4. \(n=0 \Rightarrow \) get indicial eqn for \(r \)

 \(\Rightarrow \) solve indicial eqn for \(r \)

5. get recurrence relation for coefficients for each \(r \)

6. get general form of coefficients from the recurrence relation (compute 4 terms if there is no general form for the coefficients)
1. Compute the radius of convergence by using ratio test (or use Theorem)

2. Euler eqn: \(x^2 y'' + 2xy' + \beta y = 0 \) \((\beta \text{ constant})\)

 Try \(y = x^r \)

 \[r^2 + (2-1)r + \beta = 0 \]

 \[r_{1,2} = \frac{-(2-1) \pm \sqrt{(2-1)^2 - 4\beta}}{2} \]

 \[y(x) = C_1 x^{r_1} + C_2 x^{r_2} \quad \text{(for } r_1 \neq r_2 \text{ real)} \]