One-to-One Functions & Onto Functions

Official In-the-book Definitions: Let F be a function from a set X to a set Y.

F is one-to-one (or injective) \iff For every u and v in X,

\[\text{If } F(u) = F(v), \text{ Then } u = v\]

Also,

F is one-to-one (or injective) \iff For every u and v in X,

\[\text{If } u \neq v, \text{ Then } F(u) \neq F(v) .\]

F is onto (or surjective) \iff For every element $y \in Y$,

there exists some $x \in X$ such that $F(x) = y$.

F is a one-to-one correspondence (or a bijection) from X to Y

\iff $F : X \rightarrow Y$ is both a one-to-one function and an onto function.

Memorize the above definitions for their use in writing proofs, but a more intuitive definition of these terms is useful and is as follows:

Let $f : X \rightarrow Y$ be a function.

Function f is … \[
\begin{cases}
\text{onto} & \text{if each element of } Y \text{ is the at least one element of } X \\
\text{one-to-one} & \text{if each element of } Y \text{ is the at most one element of } X \\
\text{one-to-one and onto} & \text{exactly one element of } X
\end{cases}
\]

If $f : X \rightarrow Y$ is one-to-one and onto, then the inverse function $f^{-1} : Y \rightarrow X$ exists and $f^{-1}(y) = x$ if and only if $f(x) = y$, for all x in X and all y in Y.
Proof Design I for Proving Function F is One-to-One:

Function $F: X \rightarrow Y$ is given.

To Prove: Function F is a one-to-one function.

Proof: Suppose that u and v are any two elements of X such that

$F(u) = F(v)$. [We need to show that $u = v$.]

\[\ldots\]

\[\ldots\] (Using the formula defining $F(x)$ or some other properties
\[\ldots\] of the function F we derive simpler and simpler
\[\ldots\] equations eventually arriving at “$u = v$.”)

$\therefore u = v$.

[$\therefore \forall u, v \in X$, If $F(u) = F(v)$, Then $u = v$.]

$\therefore F$ is one-to-one, by Direct Proof, by Direct Proof. Q E D

Proof Design II for Proving Function F is One-to-One:

Function $F: X \rightarrow Y$ is given.

To Prove: Function F is a one-to-one function.

Proof: Suppose that u and v are any two elements of X such that

$u \neq v$. [We need to show that $F(u) \neq F(v)$.]

\[\ldots\]

\[\ldots\] (This is often accomplished using a proof-by-contradiction,
\[\ldots\] but sometimes it can be shown directly that $F(u) \neq F(v)$.)

\[\ldots\]

$\therefore F(u) \neq F(v)$.

[$\therefore \forall u, v \in X$, If $F(u) = F(v)$, Then $u = v$, by contraposition.]

$\therefore F$ is one-to-one by Direct Proof. Q E D
Proof Design for Proving that Function F is Onto:

Function $F: X \rightarrow Y$ is given.

To Prove: Function F is an onto function.

Proof: Suppose y is any element in Y.

[We need to show that there is some x in X with $F(x) = y$.]

(Note: In a workspace, and before the writing of the proof has begun, the equation $F(x) = y$ is manipulated in order to solve for x in terms of y deriving a formula: $x = \text{“Formula in terms of } y\text{”}$. Use this formula to define the correct pre-image x for the selected y at the start.)

Let $x = \text{“Formula in terms of } y\text{”}$

Then, $F(x) = (\text{the complicated expression obtained by replacing } x \text{ by the “Formula in terms of } y\text{”}) = \ldots \text{(simplifications)} \ldots = y$.

[$\therefore \forall y \text{ in } Y, \text{ there exists an element } x \text{ in } X \text{ such that } F(x) = y$.]

$\therefore F$ is onto, by Direct Proof. Q E D

Proof Design to Prove that F is a One-to-One Correspondence (or Bijection):

Function $F: X \rightarrow Y$ is given.

To Prove: F is a One-to-One Correspondence.

Proof:

Part I: [Prove F is one-to-one.] $\ldots \ldots \therefore F$ is one-to-one by Direct Proof.

Part II: [Prove F is onto.] $\ldots \ldots \therefore F$ is onto by Direct Proof.

$\therefore F$ is one-to-one and onto.

$\therefore F$ is a one-to-one correspondence. Q E D