Activity 3 - Cartesian Products

Remember that for two sets A and B, the Cartesian product $A \times B$ is the set of all ordered pairs (a, b) where a is in A and b is in B. Symbolically, this is written:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

1. What is the Cartesian product of \mathbb{R} and \mathbb{R} ?
2. Let $A=\{1,2,3\}$ and let $B=\{f, g\}$.
a) Write out all the elements in the set $A \times B$.
b) Write out all the elements in the set $B \times B$.
3. Let A be the set of solutions to

$$
0=x^{2}-3 x+2
$$

and let B be the set of solutions to

$$
0=x^{2}-7 x+10
$$

a) What are A and B ?
b) What is $A \cup B$? $A \cap B$? $A \times B$?
c) Is $A \times B=B \times A$?
4. Let S^{1} be a circle, and let I be an interval (a line segment). The following Cartesian products can be interpreted as shapes. What are the shapes?
a) $I \times I$
b) $S^{1} \times I$
c) $S^{1} \times S^{1}$
d) $I \times I \times I$

Activity 4 - Relations On Sets

1. Take A and B from Problem 3, Activity 3 .

$$
A=\{1,2\} \text { and } B=\{2,5\}
$$

Suppose we want to know all the instances when an element of A is less than an element of B. Write out all of these instances as a subset of the Cartesian product.
2. Let A be the set $\{3,4,5,6,7,8\}$. Draw graphs depicting the following set relations.
a) $x \mathbf{R} y \Longleftrightarrow x<y$
b) $x \mathbf{R} y \Longleftrightarrow x+y>11$.
c) $x \mathbf{R} y \Longleftrightarrow 2$ divides $x-y$
3. Let $X=\{a, b, c\}$, and let $\mathscr{P}(X)$ be the power set of B. Define a relation on $\mathscr{P}(X)$ as follows: for all sets A and B in $\mathscr{P}(X)$,
$A \mathbf{R} B \Longleftrightarrow A$ has the same number of elements as B
Draw a graph depicting this set relation.
4. Let S be the set of all strings of a's and b's of length 3 (for example $a a b$ or $b a b$). Define a relation on S as follows: for all strings $s, t \in S$,
$s \mathbf{R} t \Longleftrightarrow s$ and t differ in exactly one spot.
Draw a graph depicting this set relation.

