Activity 3 — Cartesian Products

Remember that for two sets A and B, the Cartesian product $A \times B$ is the set of all ordered pairs (a, b) where a is in A and b is in B. Symbolically, this is written:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

- 1. What is the Cartesian product of \mathbb{R} and \mathbb{R} ?
- 2. Let $A = \{1, 2, 3\}$ and let $B = \{f, g\}$.
 - a) Write out all the elements in the set $A \times B$.
 - b) Write out all the elements in the set $B \times B$.
- 3. Let A be the set of solutions to

$$0 = x^2 - 3x + 2$$

and let B be the set of solutions to

$$0 = x^2 - 7x + 10$$

- a) What are A and B?
- b) What is $A \cup B$? $A \cap B$? $A \times B$?
- c) Is $A \times B = B \times A$?
- 4. Let S^1 be a circle, and let I be an interval (a line segment). The following Cartesian products can be interpreted as shapes. What are the shapes?
 - a) $I \times I$
 - b) $S^1 \times I$
 - c) $S^1 \times S^1$
 - d) $I \times I \times I$

Activity 4 — Relations On Sets

1. Take A and B from Problem 3, Activity 3.

$$A = \{1, 2\}$$
 and $B = \{2, 5\}$

Suppose we want to know all the instances when an element of A is less than an element of B. Write out all of these instances as a subset of the Cartesian product.

- 2. Let A be the set $\{3, 4, 5, 6, 7, 8\}$. Draw graphs depicting the following set relations.
 - a) $x \mathbf{R} y \iff x < y$
 - b) $x \mathbf{R} y \iff x + y > 11$.
 - c) $x \mathbf{R} y \iff 2$ divides x y
- 3. Let $X = \{a, b, c\}$, and let $\mathscr{P}(X)$ be the power set of B. Define a relation on $\mathscr{P}(X)$ as follows: for all sets A and B in $\mathscr{P}(X)$,

 $A \mathbf{R} B \iff A$ has the same number of elements as B

Draw a graph depicting this set relation.

4. Let S be the set of all strings of a's and b's of length 3 (for example *aab* or *bab*). Define a relation on S as follows: for all strings $s, t \in S$,

 $s \mathbf{R} t \iff s$ and t differ in exactly one spot.

Draw a graph depicting this set relation.