Set Identities

A, B and C are sets, and we consider them to be subsets of a universal set U. Remember that \emptyset is the empty set, and that A^c means "the complement" of A.

1.	Commutative Laws:	
		$A\cup B=B\cup A$
		$A\cap B=B\cap A$
2.	Associative Laws:	
		$(A\cup B)\cup C=A\cup (B\cup C)$
		$(A \cap B) \cap C = A \cap (B \cap C)$
3.	Distributive Laws:	
		$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
		$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
4.	Identity Laws:	
		$A\cup \emptyset = A$
		$A\cap U=A$
5.	Complement Laws:	
		$A \cup A^c = U$
		$A\cap A^c=\emptyset$
6.	Double Complement Laws:	
	I I I I I I I I I I I I I I I I I I I	$(A^c)^c = A$
7.	Idempotent Laws:	
		$A\cup A=A$
		$A \cap A = A$
8	Universal Bound Laws:	
0.	Chiverbar Dound Laws.	$A \cup U = U$
		$A \cap \emptyset = \emptyset$
Q	De Morgan's Laws:	
9.	De Morgan 5 Laws.	$(A \cup B)^c = A^c \cap B^c$
		$(A \cap B)^c = A^c \cup B^c$
10	Absorption Laws:	
10.	Absorption Laws.	$A \cup (A \cap B) = A$
		$A \cap (A \cup B) = A$
11	Complements of U and ϕ .	
11.	Complements of U and ψ :	$U^c = \emptyset$
		$\phi^c = U$
10	Sat Difference I	
12.	Set Difference Law:	$A - B = A \cap B^c$