Open problems

The Art of a Commuting Pair

Introduction

Outline of this talk

Jiasheng Pan (The China of Texas-Pan American)

Linear operators

Aluthge and Mean transforms of bounded

1
For \(\text{Te}(B) \), the polar decomposition of \(B(\alpha) \): Algebra of bounded operators on the complex Hilbert space.

Introduction
Complex matrix of a square

The polar decomposition of a square.

The complex value of z of $z = r \cdot e^{i\theta}$ is $|z| = r \cdot e^{i\theta}$.

Examples.

- Zero complex number:
 - The polar form (decomposition) of a.

- Unitary matrix U:
 - Hermitian matrix H.

- $A = I + T$.
\[A \notin \text{ invertible} \implies \log (\mathbf{T} \mathbf{T}^*) \geq \log (\mathbf{T} \mathbf{T}^*) \]

\[\text{for } a > p \geq 1 \]

Study p-hermoparmonic \(\neq \log \)-hyper. oper.

Aluthage in [1990], \text{IEEE}, 1990, in order to

\[\text{This transform was first studied by} \]

\[\text{The Aluthage transform of } \mathbf{E} \text{ is} \]

\[\text{Hermitian matrix} \]

\[\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{pmatrix}
\]

\[=
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]
Does I have a nontrivial (\neq 0, x) \& \text{Te} \text{b(x)}.

Let \text{x} be a Banach space of dim x \geq 2

\text{Invention subspace problem: } \text{Invention subspace problem:}

\text{Problem connection with the invention subspace}

\text{One reason is its in recent years. The art has received much attention.}
Basic results of the AT

Jung, Ko and Pearcy proved in [IIEOT, 2000] that for Te, B, T has a nontrivial invariant subspace $\iff T$ does not preserve the spectrum of T in $[IIEOT, 12]$ equals T_{EOT} that AT need not preserve the k-hyponormality for $k \geq 2$.
A normal operator is closer to being of an operator is also known that the iterated AT

It is well known that T has a nontrivial invariant subspace if T is normal.

\(\begin{align*}
\frac{1}{2} (x) & = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) \\
\frac{1}{2} (2) & = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) \\
\frac{1}{2} (1) & = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) \\
\frac{1}{2} (0) & = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) \\
\end{align*} \)
For a weighted shift

\[\omega_d \equiv \text{shift} \left(d_0, d_1, d_2, \ldots \right) : \ell^2(\mathbb{Z}^+) \rightarrow \ell^2(\mathbb{Z}^+), \]

\[\omega_d = U + D_d = \begin{pmatrix} 0 & & & \\ \vdots & \ddots & \ddots & \\ & & 0 & \vdots \\ 1 & 0 & & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ 0 \end{pmatrix}, \]

where \(x_i > 0 \).

\(\tilde{\omega}_d = D_d^{1/2} U + D_d^{1/2} = \text{shift} \left(\sqrt{d_0 d_1}, \sqrt{d_1 d_2}, \sqrt{d_2 d_3}, \ldots \right) \)

\(\therefore \omega_d (e_n) = D_d^{1/2} U (e_n) = D_d^{1/2} \left(\sqrt{d_n} e_n \right) = \sqrt{d_n} \cdot D_d^{1/2} (e_{n+1}) = \sqrt{d_n} \cdot D_d^{1/2} (e_{n+1}) = \sqrt{d_n d_{n+1}} \cdot e_{n+1} \)
Shift \(\frac{2}{4} \), it converges to \(\frac{2}{4} \) at \(\lambda \in B(\alpha) \),

\[\frac{1}{3} \leq \text{Motivation of the Mean Transformation} \]

Because it involves the term \(\frac{1}{3} \),

\[\frac{1}{3} \leq \text{Involves the term} \quad \frac{1}{3} \leq \text{Involves} \quad \frac{1}{3} \leq \text{Involves} \quad \frac{1}{3} \leq \text{Involves} \]

It is so hard to find the actual use,

In the view of the practical use,
Polar decomposition of operators.

- If we know the

\[
\frac{z}{2}, \frac{z}{2+\alpha}, \ldots
\]

\[
\Rightarrow \text{shift} (\alpha_0 + x_1, \alpha_0)
\]

- For \(A_1 \equiv \text{shift} (\alpha_0, \alpha_0, \ldots) \)

Dual diagonal transformation.

\[
1 \leftarrow 1 \equiv -\frac{1}{2} (211 + 111) \quad \text{where}
\]

\[
1 = -\frac{1}{2} (211 + 111)
\]

by the mean of \(t \), then we define the mean of \(t \) as the polar decomposition.

\[
\Rightarrow 1 \leftarrow 1 = 111
\]
The $\mathcal{B}(\mathcal{A})$ is subnormal

For $T \in \text{normed}$

$T \in \mathcal{B}(\mathcal{A}) \implies$ jointly hyponormal

The $\mathcal{B}(\mathcal{A})$ is k-hyponormal if (I, T, T^2, \ldots, T^k)

The $\mathcal{B}(\mathcal{A})$ is hyponormal if $T^* T \geq T T^*$

The $\mathcal{B}(\mathcal{A})$ is hyponormal if $T^* T \geq T T^*$

The $\mathcal{B}(\mathcal{A})$ is subnormal if $T^* T \geq T T^*$

The $\mathcal{B}(\mathcal{A})$ is normed if $T = N|T|
eq 0$

Let say that

\forall
If \(\lim_{t \to 0} f(t) = 0 \) for each \(x \), \(\lim_{t \to 0} (x)_{f(t)} = 0 \) \(\lim_{t \to 0} \|x\|_{f(t)} \leq \|x\|_0 \) \(\forall (x) \in B(c(t)) \).

That is, \(\lim_{t \to 0} \) - continuous at \(B(c(t)) \).

The mean transformation map \(T \) is is a positive operator.

Then \(f(1) = 1 \) \(f(t) = \phi(t) \) \(\phi \in B(c(t)) \) when \(\phi \in B(c(t)) \).

Ex: \(T : \{0, p\} \in B(c(t)) \) where \(p \in B(c(t)) \).

The spectrum of \(T \) is not equal to that of \(T \).

In \([0, 13], \) we show the following:

① Basic results of the MT.
If \(P \Rightarrow Q \) is true, then \(P \) can always be considered true for any \(Q \) that is true.

\[\text{If } \neg P \Rightarrow \neg Q \text{ is not true, then } \neg P \text{ is not true.} \]

Example: \(P = \text{it is sunny} \), \(Q = \text{it is not cloudy} \).

Then we have:

\[\neg P = \neg \text{it is sunny} \text{ but } \neg Q = \text{it is not cloudy} \text{ is true.} \]

But the converse of it is not true.

The MT \(\neg P \not\rightarrow \neg Q \) is also not true.
And plausible definition

Thus, we don't consider this one.

\[
\frac{\text{t} - \sqrt{\text{t}^2 + 1}}{\text{t}} \land \text{t}_2 = \text{t}_1 \sqrt{\text{t}_1^2 + 1}
\]

The following:

Isometry \(L \) which satisfies simultaneously

But we can't find a common point

\[
\text{t} : = (\text{t}_1, \text{t}_2) : \left(\frac{\text{t}_1^2 + 1}{\text{t}^2 + 1}, \frac{\text{t}_1^2 + 1}{\text{t}^2 + 1}, \frac{\text{t}_1^2 + 1}{\text{t}^2 + 1} \right)
\]

\(\text{t} \) at a common point of \((\text{t}_1, \text{t}_2)\)
so we don't consider this one, not hyper.

\[F \in \mathcal{L}(V, V) \] \(\iff \) \(l \in \text{hyper} \), but \(l \neq \text{hyper} \)

\[\text{ker}(l) \subseteq \text{ker}(l') \]

\[\text{ker}(l) \bigcap \text{ker}(l') = \{0\} \]

that is, \(\text{ker}(l) \bigcap \text{ker}(l') = \{0\} \). (point) partition isometry.

\((l', l) = \) \((l', l,) = (l, l') \). (point) partition is not the AR of \(l \), but

\[l' = l \bigcap l' \]

Then a polar decomposition of the pair \((l', l)\).

\[\text{where } P = l - l' \]

where \(P = l - l' \).
Problem 2. Does a Taylor spectrum of \(U \) equal that of \(U + \psi \) ?

\(\psi \) is a \(k \)-hyperpoles, does it follow that \(AT \) is \(\psi \)?

Problem 1. For \(k \geq 1 \), if \(\psi \) is \(\psi \), then \(AT \) is \(\psi \).

We study the following two problems.

Based on the definition of \(AT \),

\[\psi \equiv (\psi, \psi) : = (1/n, 1/n), 1/n \in \mathbb{R} \]
C. \(\text{the class of } k \)-hyper. pairs in \(C_0(k,2) \)

- \(\text{operators on a Hilbert space } \mathcal{H}^2 \)
- \(\text{the class of commuting pairs of } \mathcal{H}^2 \)

For \(k \in \mathbb{R}^+ \) and \(k \neq k' \):

\[\mathcal{E} = (1, 0), \quad \mathcal{E} = (0, 2) \]

- \(\mathcal{T}_L(\mathcal{E}, k) = \{ g \in \mathcal{K}, k \} \in \mathcal{K}(k, k') \)
- \(\mathcal{T}_R(\mathcal{E}, k) = \{ \alpha \in \mathcal{K}, k \} \in \mathcal{K}(k, k') \)

such that:

\[\mathbb{R}^2 \rightarrow \{ (x, y) \in \mathbb{R} \} \]

\(\mathcal{X} \)-variance weighted shift

\(\mathcal{Y} \)
- C_∞: the class of subnormal pairs in C_0.
- We have that $C_\infty \leq \ldots \leq C_k \leq \ldots \leq C_1 \leq C_0$.
- Weight diagram of $\omega(\alpha, \beta) \equiv (T_1, T_2)$
\[\begin{pmatrix} \ast & \ast & \cdots & \ast \\ \vdots & \vdots & & \vdots \\ \ast & \ast & \cdots & \ast \\ \ast & \ast & \cdots & \ast \end{pmatrix} \begin{pmatrix} \ast \\ \vdots \\ \ast \\ \ast \end{pmatrix} \iff \text{(finiteness)} \land \psi \land \left(\exists \chi \in \text{ (finiteness)} \land \chi \right) \land \psi \land \left(\exists \chi \in \text{ (finiteness)} \land \chi \right) \land \psi \land \left(\exists \chi \in \text{ (finiteness)} \land \chi \right) \land \psi
\[\text{If } C \cap A \cap R \neq \emptyset, \text{ we have that for } k, k_2 > 0\]

\[\Rightarrow 0 \leq (k, k_2)\]
The given table is nonexistent.

By Figure 2
\\(P_{4}^{x} = \frac{t}{3} \)

If \(\text{c}(x,p') \) is given,

Thm 3:

If \(\text{c}(x,p') \neq C \)

E.

Thm 2:
A cochain complex (called the Koszul complex), denoted by

\[K(\Delta, x) : 0 \to D_x \to \cdots \to D_x \to D_x \to 0 \]

where the restriction of \(D_x \) to \(x \) is

\[\text{antichain operator} \]

\[D_x \to x \to \cdots \to 0 \to D_z \to \cdots \to D_x \]
• If \(\text{Ran } D^\Delta \neq \ker D^\Delta \), then the Koszul complex is said to be *exact*.

• \(\Sigma_T(\Delta) := \{ (\lambda_1, \lambda_2) \in \mathbb{C}^2 \mid \text{K}((T_1 - \lambda_1, T_2 - \lambda_2), \mathbb{C}) \text{ is not exact} \} \)

5 Open problems

• This work is only a start on the theory of the MT (resp. AT of a commuting pair) of bounded operators

0 If \(T \) is log-hyponormal, is \(T \) log-hypo.? the MT
I has a nontrivial invariant subspace

\[f \left(\| x \| \right) \xrightarrow{\text{if}} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f^k(\| x \|) = 0 \]

That is, \(\| x \| \to 0 \) - continuous on \(B(x_0) \)

Is the mean transformation map \(T \)

Also p-phylo. i.e., for any \(p > 1 \), if \(T \) is p-

"penomological, \(\alpha \)
Thank you.

If a common nontrivial subspace (Π, T_{2}) has a common nontrivial subspace (Π, T_{1}) has a common nontrivial subspace.

That is (or is it subnormal?) does it follow that $C(a, b)$ is subnormal, does it follow.

\[
\frac{1}{2} (\frac{1}{2}, \Pi_{2}) \sim \frac{1}{2} (\frac{1}{2}, \Pi_{1}) = 0 = 0 \sim b (\frac{1}{2}, \Pi_{b}) \sim \frac{1}{2} (\frac{1}{2}, \Pi_{a,b})
\]