Bose-Einstein condensation and limit theorems

Kay Kirkpatrick, UIUC

2015

Bose-Einstein condensation: from many quantum particles to a quantum "superparticle"

Kay Kirkpatrick, UIUC/MSRI

$$
8
$$

The big challenge: making physics rigorous

The big challenge: making physics rigorous
microscopic first principles \rightsquigarrow zoom out \rightsquigarrow MACROSCOPIC STATES

Courtesy Greg L and Digital Vision/Getty Images

1925: predicting Bose-Einstein condensation (BEC)

1925: predicting Bose-Einstein condensation (BEC)

1995: Cornell-Wieman and Ketterle experiment

Courtesy U Michigan

After the trap was turned off

BEC stayed coherent like a single macroscopic quantum particle.

Momentum is concentrated after release at 50 nK . (Atomic Lab)

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$
i \partial_{t} \varphi=-\Delta \varphi+\mu|\varphi|^{2} \varphi
$$

Fruitful NLS research: competition between two RHS terms

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$
i \partial_{t} \varphi=-\Delta \varphi+\mu|\varphi|^{2} \varphi
$$

Fruitful NLS research: competition between two RHS terms

Can we rigorously connect the physics and the math?

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$
i \partial_{t} \varphi=-\Delta \varphi+\mu|\varphi|^{2} \varphi
$$

Fruitful NLS research: competition between two RHS terms

Can we rigorously connect the physics and the math?

> Yes!

The outline (w/ G. Staffilani, B. Schlein, G. Ben Arous)

 microscopic first principles $\rightsquigarrow \rightsquigarrow$ Macroscopic states1. N bosons \rightsquigarrow mean-field limit \rightsquigarrow Hartree equation
2. N bosons \rightsquigarrow localizing limit \rightsquigarrow NLS
3. Quantum probability and CLTs

A quantum "particle" is really a wavefunction

For each $t, \psi(x, t) \in L^{2}\left(\mathbb{R}^{d}\right)$ solves a Schrödinger equation

$$
i \partial_{t} \psi=-\Delta \psi+V_{e x t}(x) \psi
$$

A quantum "particle" is really a wavefunction

For each $t, \psi(x, t) \in L^{2}\left(\mathbb{R}^{d}\right)$ solves a Schrödinger equation

$$
i \partial_{t} \psi=-\Delta \psi+V_{e x t}(x) \psi=: H \psi
$$

- $-\Delta=-\sum_{i=1}^{d} \partial_{x^{i} x^{i}} \geq 0$
- external trapping potential $V_{\text {ext }}$
- solution $\psi(x, t)=e^{-i H t} \psi_{0}(x)$

A quantum "particle" is really a wavefunction

For each $t, \psi(x, t) \in L^{2}\left(\mathbb{R}^{d}\right)$ solves a Schrödinger equation

$$
i \partial_{t} \psi=-\Delta \psi+V_{e x t}(x) \psi=: H \psi
$$

- $-\Delta=-\sum_{i=1}^{d} \partial_{x^{i} x^{i}} \geq 0$
- external trapping potential $V_{\text {ext }}$
- solution $\psi(x, t)=e^{-i H t} \psi_{0}(x)$
- $\int\left|\psi_{0}\right|^{2}=1 \Longrightarrow|\psi(x, t)|^{2}$ is a probability density for all t. Exercise: why?

Particle in a box

$$
V_{e x t}=" \infty \cdot \mathbf{1}_{[0,1] c}{ }^{c} \text { " has ground state } \psi(x)=\sqrt{2} \sin (\pi x)
$$

The microscopic N-particle model

Wavefunction $\psi_{N}(\mathbf{x}, t)=\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \in L^{2}\left(\mathbb{R}^{d N}\right) \forall t$ solves the N-body Schrödinger equation:

$$
i \partial_{t} \psi_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}} \psi_{N}+\sum_{i<j}^{N} U\left(x_{i}-x_{j}\right) \psi_{N}=: H_{N} \psi_{N}
$$

The microscopic N-particle model

Wavefunction $\psi_{N}(\mathbf{x}, t)=\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \in L^{2}\left(\mathbb{R}^{d N}\right) \forall t$ solves the N-body Schrödinger equation:

$$
i \partial_{t} \psi_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}} \psi_{N}+\sum_{i<j}^{N} U\left(x_{i}-x_{j}\right) \psi_{N}=: H_{N} \psi_{N}
$$

- pair interaction potential U
- solution $\psi_{N}(\mathbf{x}, t)=e^{-i H_{N} t} \psi_{N}^{0}(\mathbf{x})$
- joint density $\left|\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right)\right|^{2}$

More assumptions

For N bosons, ψ_{N} is symmetric (particles are exchangeable):

$$
\psi_{N}\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}, t\right)=\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \text { for } \sigma \in S_{N}
$$

More assumptions

For N bosons, ψ_{N} is symmetric (particles are exchangeable):

$$
\psi_{N}\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}, t\right)=\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \text { for } \sigma \in S_{N}
$$

Initial data is factorized (particles i.i.d.):

$$
\psi_{N}^{0}(\mathbf{x})=\prod_{j=1}^{N} \varphi_{0}\left(x_{j}\right) \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)
$$

More assumptions

For N bosons, ψ_{N} is symmetric (particles are exchangeable):

$$
\psi_{N}\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}, t\right)=\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \text { for } \sigma \in S_{N}
$$

Initial data is factorized (particles i.i.d.):

$$
\psi_{N}^{0}(\mathbf{x})=\prod_{j=1}^{N} \varphi_{0}\left(x_{j}\right) \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)
$$

But interactions create correlations for $t>0$.

Mean-field pair interaction $U=\frac{1}{N} V$

Weak: order $1 / N$. Long distance: $V \in L^{\infty}\left(\mathbb{R}^{3}\right)$.

$$
i \partial_{t} \psi_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}} \psi_{N}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \psi_{N}
$$

Mean-field pair interaction $U=\frac{1}{N} V$

Weak: order $1 / N$. Long distance: $V \in L^{\infty}\left(\mathbb{R}^{3}\right)$.

$$
i \partial_{t} \psi_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}} \psi_{N}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \psi_{N} .
$$

Spohn, 1980: If ψ_{N} is initially factorized and approximately factorized for all t, i.e., $\psi_{N}(\mathbf{x}, t) \simeq \prod_{j=1}^{N} \varphi\left(x_{j}, t\right)$, then " $\psi_{N} \rightarrow \varphi^{\prime}$ " and φ solves the Hartree equation:

$$
i \partial_{t} \varphi=-\Delta \varphi+\left(V *|\varphi|^{2}\right) \varphi .
$$

Convergence " $\psi_{N} \rightarrow \varphi$ " means in the sense of marginals:

$$
\| \gamma_{N}^{(1)}-|\varphi\rangle\langle\varphi| \|_{\operatorname{Tr}} \stackrel{N \rightarrow \infty}{ } 0
$$

Convergence " $\psi_{N} \rightarrow \varphi$ " means in the sense of marginals:

$$
\| \gamma_{N}^{(1)}-|\varphi\rangle\langle\varphi| \|_{\operatorname{Tr}} \stackrel{N \rightarrow \infty}{ } 0
$$

where $|\varphi\rangle\langle\varphi|\left(x_{1}, x_{1}^{\prime}\right)=\bar{\varphi}\left(x_{1}\right) \varphi\left(x_{1}^{\prime}\right)$ and
one-particle marginal density $\gamma_{N}^{(1)}:=\operatorname{Tr}_{N-1}\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right|$ has kernel

$$
\gamma_{N}^{(1)}\left(x_{1} ; x_{1}^{\prime}, t\right):=\int \bar{\psi}_{N}\left(x_{1}, \mathbf{x}_{N-1}, t\right) \psi_{N}\left(x_{1}^{\prime}, \mathbf{x}_{N-1}, t\right) d \mathbf{x}_{N-1} .
$$

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x})=1 /|\mathbf{x}|$, not assuming approximate factorization.

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x})=1 /|\mathbf{x}|$, not assuming approximate factorization.

Rodnianski-Schlein '08, Chen-Lee-Schlein, '11: convergence rate

$$
\| \gamma_{N}^{(1)}-|\varphi\rangle\langle\varphi| \|_{T_{r}} \leq \frac{C e^{K t}}{N}
$$

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x})=1 /|\mathbf{x}|$, not assuming approximate factorization.

Rodnianski-Schlein '08, Chen-Lee-Schlein, '11: convergence rate

$$
\| \gamma_{N}^{(1)}-|\varphi\rangle\langle\varphi| \|_{T r} \leq \frac{C e^{K t}}{N}
$$

Preview of localizing interactions: $\left(V_{N} *|\varphi|^{2}\right) \varphi \rightarrow\left(\delta *|\varphi|^{2}\right) \varphi$ Erdös, Schlein, Yau, K., Staffilani, Chen, Pavlovic, Tzirakis...

Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:
$\left\{\psi_{N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)\right\}_{N \in \mathbb{N}}$ exhibits Bose-Einstein condensation into one-particle quantum state $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ iff one-particle marginals converge in trace norm:

$$
\gamma_{N}^{(1)}=\operatorname{Tr}_{N-1}\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right| \xrightarrow{N \rightarrow \infty}|\varphi\rangle\langle\varphi| .
$$

Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:
$\left\{\psi_{N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)\right\}_{N \in \mathbb{N}}$ exhibits Bose-Einstein condensation into one-particle quantum state $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ iff one-particle marginals converge in trace norm:

$$
\gamma_{N}^{(1)}=\operatorname{Tr}_{N-1}\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right| \xrightarrow{N \rightarrow \infty}|\varphi\rangle\langle\varphi| .
$$

Generalizes factorized: $\psi_{N}(\mathbf{x})=\prod_{j=1}^{N} \varphi\left(x_{j}\right)$ is BEC into φ.

BEC limit theorems with parameter $\beta \in(0,1]$

Now localized strong interactions: $N^{d \beta} V\left(N^{\beta}(\cdot)\right) \rightarrow b_{0} \delta$.

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} N^{d \beta} V\left(N^{\beta}\left(x_{i}-x_{j}\right)\right)
$$

BEC limit theorems with parameter $\beta \in(0,1]$

Now localized strong interactions: $N^{d \beta} V\left(N^{\beta}(\cdot)\right) \rightarrow b_{0} \delta$.

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} N^{d \beta} V\left(N^{\beta}\left(x_{i}-x_{j}\right)\right)
$$

Theorems (Erdös-Schlein-Yau 2006-2008 $d=3$ K.-Schlein-Staffilani $2009 d=2$ plane and rational tori): Systems that are initially BEC remain condensed for all time, and the macroscopic evolution is the NLS:

$$
i \partial_{t} \varphi=-\Delta \varphi+b_{0}|\varphi|^{2} \varphi
$$

Our limit theorems make the physics of BEC rigorous

$$
\begin{array}{cccc}
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} N^{d \beta} V\left(N^{\beta}\left(x_{i}-x_{j}\right)\right) \\
\text { micro : } & \psi_{N}^{0} & N \text {-body Schrod. } \\
\text { init. BEC } & \downarrow & & \psi_{N} \\
\text { MACRO : } & \varphi_{0} & \longrightarrow & \downarrow \\
& & & \text { NLS evolution }
\end{array}
$$

$$
i \partial_{t} \varphi=-\Delta \varphi+b_{0}|\varphi|^{2} \varphi
$$

A taste of quantum probability $(\mathcal{H}, \mathcal{P}, \varphi)$

Hilbert space \mathcal{H}, set of projections \mathcal{P}, and state φ.
Quantum random variables (RVs) or observables: operators on \mathcal{H}.

A taste of quantum probability $(\mathcal{H}, \mathcal{P}, \varphi)$

Hilbert space \mathcal{H}, set of projections \mathcal{P}, and state φ.
Quantum random variables (RVs) or observables: operators on \mathcal{H}.

The expectation of an observable A in a pure state is

$$
\mathbb{E}_{\varphi}[A]:=\langle\varphi \mid A \varphi\rangle=\int \varphi(x) \overline{A \varphi}(x) d x
$$

Position observable is $X(\varphi)(x):=x \varphi(x)$ with density $|\varphi|^{2}$.

Only some probability facts have quantum analogues
Single-slit pattern

Courtesy of Jordgette

The BEC limit theorems imply quantum LLNs

If A is a one-particle observable and

$$
A_{j}=1 \otimes \cdots \otimes 1 \otimes A \otimes 1 \otimes \cdots \otimes 1
$$

then for each $\epsilon>0$,

$$
\limsup _{N \rightarrow \infty} \mathbb{P}_{\psi_{N}}\left\{\left\lvert\, \frac{1}{N} \sum_{j=1}^{N} A_{j}\right.\right.
$$

The BEC limit theorems imply quantum LLNs

If A is a one-particle observable and

$$
A_{j}=1 \otimes \cdots \otimes 1 \otimes A \otimes 1 \otimes \cdots \otimes 1
$$

then for each $\epsilon>0$,

$$
\limsup _{N \rightarrow \infty} \mathbb{P}_{\psi_{N}}\left\{\left|\frac{1}{N} \sum_{j=1}^{N} A_{j}-\langle\varphi \mid A \varphi\rangle\right| \geq \epsilon\right\}=0
$$

BEC can explode as a bosenova

BEC can explode as a bosenova

We need a control theory of BEC

- Central limit theorem for BEC (Ben Arous-K.-Schlein, 2013)

Our quantum CLT has correlations coming from interactions

- CLT for quantum groups (Brannan-K., 2015)

Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state $\psi_{N}^{0}, \varphi_{0}, A$, and V, then for $t \in \mathbb{R}$

Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state $\psi_{N}^{0}, \varphi_{0}, A$, and V, then for $t \in \mathbb{R}$

$$
\mathcal{A}_{t}:=\frac{1}{\sqrt{N}} \sum_{j=1}^{N}\left(A_{j}-\mathbb{E}_{\varphi_{t}} A\right) \xrightarrow{\text { distrib. as } N \rightarrow \infty} \mathcal{N}\left(0, \sigma_{t}^{2}\right)
$$

Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state $\psi_{N}^{0}, \varphi_{0}, A$, and V, then for $t \in \mathbb{R}$

$$
\mathcal{A}_{t}:=\frac{1}{\sqrt{N}} \sum_{j=1}^{N}\left(A_{j}-\mathbb{E}_{\varphi_{t}} A\right) \xrightarrow{\text { distrib. as } N \rightarrow \infty} \mathcal{N}\left(0, \sigma_{t}^{2}\right)
$$

The variance that we would guess is correct at $t=0$ only:

$$
\sigma_{0}^{2}=\mathbb{E}_{\varphi_{0}}\left[A^{2}\right]-\left(\mathbb{E}_{\varphi_{0}} A\right)^{2}
$$

σ_{t}^{2} has $\varphi_{0} \rightsquigarrow \varphi_{t} \ldots$

Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state $\psi_{N}^{0}, \varphi_{0}, A$, and V, then for $t \in \mathbb{R}$

$$
\mathcal{A}_{t}:=\frac{1}{\sqrt{N}} \sum_{j=1}^{N}\left(A_{j}-\mathbb{E}_{\varphi_{t}} A\right) \xrightarrow{\text { distrib. as } N \rightarrow \infty} \mathcal{N}\left(0, \sigma_{t}^{2}\right)
$$

The variance that we would guess is correct at $t=0$ only:

$$
\sigma_{0}^{2}=\mathbb{E}_{\varphi_{0}}\left[A^{2}\right]-\left(\mathbb{E}_{\varphi_{0}} A\right)^{2}
$$

σ_{t}^{2} has $\varphi_{0} \rightsquigarrow \varphi_{t} \ldots$ and twisted by the Bogoliubov transform.

We studied freely independent RVs via quantum groups
(instead of random matrices) with Michael Brannan (Texas A\&M)

Theorem (Brannan, K. 2015): Deformed quantum groups have an action

ASK MIKE FOR HIS ACTION FIGURE TEX CODE on Free Araki-Woods factors

Theorem (Brannan, K. 2015): Deformed quantum groups have an action
ASK MIKE FOR HIS ACTION FIGURE TEX CODE
on Free Araki-Woods factors

$$
\Gamma=\Gamma\left(\mathbb{R}^{n}, U_{t}\right)^{\prime \prime}:=\left\{\ell(\xi)+\ell(\xi)^{*}: \xi \in H_{\mathbb{R}}\right\}^{\prime \prime}
$$

with free quasi-free state φ_{Ω},

$$
\alpha\left(c_{i}\right)=\sum u_{i j} \otimes c_{j}, \quad U_{t}=A^{i t}, \quad \text { some } A>0
$$

Usually a full type $I I I_{\lambda}$ factor for $\lambda \in[0,1]$. Best case: $\lambda=1$!

Theorem (Brannan, K. 2015): Deformed quantum groups have an action
ASK MIKE FOR HIS ACTION FIGURE TEX CODE
on Free Araki-Woods factors

$$
\Gamma=\Gamma\left(\mathbb{R}^{n}, U_{t}\right)^{\prime \prime}:=\left\{\ell(\xi)+\ell(\xi)^{*}: \xi \in H_{\mathbb{R}}\right\}^{\prime \prime}
$$

with free quasi-free state φ_{Ω},

$$
\alpha\left(c_{i}\right)=\sum u_{i j} \otimes c_{j}, \quad U_{t}=A^{i t}, \quad \text { some } A>0
$$

Usually a full type $I I I_{\lambda}$ factor for $\lambda \in[0,1]$. Best case: $\lambda=1$! (exciting new development from MSRI...)

Theorem (Brannan, K. 2015): For all almost-periodic representations U_{t} on $H_{\mathbb{R}}$, there is a sequence of quantum groups

$$
\left\{O_{F(n)}^{+}\right\}_{n \geq 1}
$$

that has Haar distributional limit

$$
\left(\Gamma, \varphi_{\Omega}\right)
$$

Theorem (Brannan, K. 2015): For all almost-periodic representations U_{t} on $H_{\mathbb{R}}$, there is a sequence of quantum groups

$$
\left\{O_{F(n)}^{+}\right\}_{n \geq 1}
$$

that has Haar distributional limit

$$
\left(\Gamma, \varphi_{\Omega}\right)
$$

Exciting idea: Our new Weingarten-type calculus

Theorem (Brannan, K. 2015): For all almost-periodic representations U_{t} on $H_{\mathbb{R}}$, there is a sequence of quantum groups

$$
\left\{O_{F(n)}^{+}\right\}_{n \geq 1}
$$

that has Haar distributional limit

$$
\left(\Gamma, \varphi_{\Omega}\right)
$$

Exciting idea: Our new Weingarten-type calculus is similar to

Martin Hairer's new Feynman-type calculus

Theorem (Brannan, K. 2015): For all almost-periodic representations U_{t} on $H_{\mathbb{R}}$, there is a sequence of quantum groups

$$
\left\{O_{F(n)}^{+}\right\}_{n \geq 1}
$$

that has Haar distributional limit

$$
\left(\Gamma, \varphi_{\Omega}\right)
$$

Exciting idea: Our new Weingarten-type calculus is similar to

Martin Hairer's new Feynman-type calculus
MH : quantum to classical; B-K: classical to quantum

How do physics, the world, and the universe work?

Physics

$\downarrow \quad \uparrow$
Analysis

Thanks

NSF DMS-1106770, OISE-0730136, CAREER DMS-1254791

arXiv:0808.0505 (AJM), 1009.5737 (CPAM), 1111.6999 (CMP), 1505.05137(PJM)

Why do interactions become the cubic nonlinearity?

$$
i \partial_{t} \psi_{N}=\sum-\Delta_{x_{j}} \psi_{N}+\frac{1}{N} \sum \sum V\left(x_{i}-x_{j}\right) \psi_{N}
$$

Particle 1 sees

$$
\begin{aligned}
\frac{1}{N} \sum_{j=2}^{N} V\left(x_{1}-x_{j}\right) & \simeq \frac{1}{N} \sum_{j=2}^{N} \int V\left(x_{1}-y\right)|\varphi(y)|^{2} d y \\
& =\frac{N-1}{N} \int V\left(x_{1}-y\right)|\varphi(y)|^{2} d y \\
& \xrightarrow{N \rightarrow \infty}\left(V *|\varphi|^{2}\right)\left(x_{1}\right)
\end{aligned}
$$

