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1925: predicting Bose-Einstein condensation (BEC)

1995: Cornell-Wieman and Ketterle experiment
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After the trap was turned off

BEC stayed coherent like a single macroscopic quantum particle.

Momentum is concentrated after release at 50 nK. (Atomic Lab)



The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic
nonlinear Schrödinger equation (NLS):

i∂tϕ = −∆ϕ+ µ|ϕ|2ϕ

Fruitful NLS research: competition between two RHS terms

Can we rigorously connect the physics and the math?

Yes!
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The outline (w/ G. Staffilani, B. Schlein, G. Ben Arous)

microscopic first principles   Macroscopic states

1. N bosons  mean-field limit  Hartree equation
2. N bosons  localizing limit  NLS
3. Quantum probability and CLTs



A quantum “particle” is really a wavefunction

For each t, ψ(x , t) ∈ L2(Rd) solves a Schrödinger equation

i∂tψ = −∆ψ + Vext(x)ψ

=: Hψ

I −∆ = −
∑d

i=1 ∂x ix i ≥ 0

I external trapping potential Vext

I solution ψ(x , t) = e−iHtψ0(x)

I
∫
|ψ0|2 = 1 =⇒ |ψ(x , t)|2 is a probability density for all t.

Exercise: why?



A quantum “particle” is really a wavefunction

For each t, ψ(x , t) ∈ L2(Rd) solves a Schrödinger equation

i∂tψ = −∆ψ + Vext(x)ψ =: Hψ

I −∆ = −
∑d

i=1 ∂x ix i ≥ 0

I external trapping potential Vext

I solution ψ(x , t) = e−iHtψ0(x)

I
∫
|ψ0|2 = 1 =⇒ |ψ(x , t)|2 is a probability density for all t.

Exercise: why?



A quantum “particle” is really a wavefunction

For each t, ψ(x , t) ∈ L2(Rd) solves a Schrödinger equation

i∂tψ = −∆ψ + Vext(x)ψ =: Hψ

I −∆ = −
∑d

i=1 ∂x ix i ≥ 0

I external trapping potential Vext

I solution ψ(x , t) = e−iHtψ0(x)

I
∫
|ψ0|2 = 1 =⇒ |ψ(x , t)|2 is a probability density for all t.

Exercise: why?



Particle in a box

Vext = “∞ · 1[0,1]C ” has ground state ψ(x) =
√

2 sin (πx)



The microscopic N-particle model

Wavefunction ψN(x, t) = ψN(x1, ..., xN , t) ∈ L2(RdN) ∀t
solves the N-body Schrödinger equation:

i∂tψN =
N∑
j=1

−∆xjψN +
N∑
i<j

U(xi − xj)ψN =: HNψN

I pair interaction potential U

I solution ψN(x, t) = e−iHN tψ0
N(x)

I joint density |ψN(x1, . . . , xN , t)|2
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More assumptions

For N bosons, ψN is symmetric (particles are exchangeable):

ψN(xσ(1), ..., xσ(N), t) = ψN(x1, ..., xN , t) for σ ∈ SN .

Initial data is factorized (particles i.i.d.):

ψ0
N(x) =

N∏
j=1

ϕ0(xj) ∈ L2
s (R3N).

But interactions create correlations for t > 0.
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Mean-field pair interaction U = 1
NV

Weak: order 1/N. Long distance: V ∈ L∞(R3).

i∂tψN =
N∑
j=1

−∆xjψN +
1

N

N∑
i<j

V (xi − xj)ψN .

Spohn, 1980: If ψN is initially factorized and approximately
factorized for all t, i.e., ψN(x, t) '

∏N
j=1 ϕ(xj , t),

then “ψN → ϕ” and ϕ solves the Hartree equation:

i∂tϕ =−∆ϕ+ (V ∗ |ϕ|2)ϕ.



Mean-field pair interaction U = 1
NV

Weak: order 1/N. Long distance: V ∈ L∞(R3).

i∂tψN =
N∑
j=1

−∆xjψN +
1

N

N∑
i<j

V (xi − xj)ψN .

Spohn, 1980: If ψN is initially factorized and approximately
factorized for all t, i.e., ψN(x, t) '

∏N
j=1 ϕ(xj , t),

then “ψN → ϕ” and ϕ solves the Hartree equation:

i∂tϕ =−∆ϕ+ (V ∗ |ϕ|2)ϕ.



Convergence “ψN → ϕ” means in the sense of marginals:

∥∥∥γ(1)
N − |ϕ〉〈ϕ|

∥∥∥
Tr

N→∞−−−−→ 0,

where |ϕ〉〈ϕ|(x1, x
′
1) = ϕ(x1)ϕ(x ′1) and

one-particle marginal density γ
(1)
N := TrN−1|ψN〉〈ψN | has kernel

γ
(1)
N (x1; x ′1, t) :=

∫
ψN(x1, xN−1, t)ψN(x ′1, xN−1, t)dxN−1.
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Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb
interaction, V (x) = 1/|x|, not assuming approximate factorization.

Rodnianski-Schlein ’08, Chen-Lee-Schlein, ’11: convergence rate∥∥∥γ(1)
N − |ϕ〉〈ϕ|

∥∥∥
Tr
≤ CeKt

N
.

Preview of localizing interactions: (VN ∗ |ϕ|2)ϕ→ (δ ∗ |ϕ|2)ϕ
Erdös, Schlein, Yau, K., Staffilani, Chen, Pavlovic, Tzirakis...
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Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:

{ψN ∈ L2
s (R3N)}N∈N exhibits Bose-Einstein condensation

into one-particle quantum state ϕ ∈ L2(R3) iff

one-particle marginals converge in trace norm:

γ
(1)
N = TrN−1|ψN〉〈ψN |

N→∞−−−−→ |ϕ〉〈ϕ|.

Generalizes factorized: ψN(x) =
∏N

j=1 ϕ(xj) is BEC into ϕ.
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BEC limit theorems with parameter β ∈ (0, 1]

Now localized strong interactions: NdβV (Nβ(·))→ b0δ.

HN =
N∑
j=1

−∆xj +
1

N

N∑
i<j

NdβV (Nβ(xi − xj)).

Theorems (Erdös-Schlein-Yau 2006-2008 d = 3
K.-Schlein-Staffilani 2009 d = 2 plane and rational tori):
Systems that are initially BEC remain condensed for all time,
and the macroscopic evolution is the NLS:

i∂tϕ = −∆ϕ+ b0|ϕ|2ϕ.
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Our limit theorems make the physics of BEC rigorous

HN =
N∑
j=1

−∆xj +
1

N

N∑
i<j

NdβV (Nβ(xi − xj))

N-body Schrod.
micro : ψ0

N −→ ψN

init. BEC ↓ ↓ marg.

MACRO : ϕ0 −→ ϕ
NLS evolution

i∂tϕ = −∆ϕ+ b0|ϕ|2ϕ.



A taste of quantum probability (H,P , ϕ)

Hilbert space H, set of projections P, and state ϕ.

Quantum random variables (RVs) or observables: operators on H.

The expectation of an observable A in a pure state is

Eϕ[A] := 〈ϕ|Aϕ〉 =

∫
ϕ(x)Aϕ(x)dx .

Position observable is X (ϕ)(x) := xϕ(x) with density |ϕ|2.
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Only some probability facts have quantum analogues

Courtesy of Jordgette



The BEC limit theorems imply quantum LLNs

If A is a one-particle observable and

Aj = 1⊗ · · · ⊗ 1⊗ A⊗ 1⊗ · · · ⊗ 1,

then for each ε > 0,

lim sup
N→∞

PψN

{∣∣∣∣∣ 1

N

N∑
j=1

Aj

− 〈ϕ|Aϕ〉

∣∣∣∣∣ ≥ ε

}
= 0.
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BEC can explode as a bosenova

We need a control theory of BEC

I Central limit theorem for BEC (Ben Arous-K.-Schlein, 2013)

Our quantum CLT has correlations coming from interactions

I CLT for quantum groups (Brannan-K., 2015)
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Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable
assumptions on the initial state ψ0

N , ϕ0, A, and V , then for t ∈ R

At :=
1√
N

N∑
j=1

(Aj − EϕtA)
distrib. as N→∞−−−−−−−−−−→ N (0, σ2

t ).

The variance that we would guess is correct at t = 0 only:

σ2
0 = Eϕ0 [A2]− (Eϕ0A)2

σ2
t has ϕ0  ϕt .... and twisted by the Bogoliubov transform.
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We studied freely independent RVs via quantum groups

(instead of random matrices) with Michael Brannan (Texas A&M)



Theorem (Brannan, K. 2015): Deformed quantum groups have
an action

ASK MIKE FOR HIS ACTION FIGURE TEX CODE

on Free Araki-Woods factors

Γ = Γ(Rn,Ut)
′′ := {`(ξ) + `(ξ)∗ : ξ ∈ HR}′′

with free quasi-free state ϕΩ,

α(ci ) =
∑

uij ⊗ cj , Ut = Ait , some A > 0.

Usually a full type IIIλ factor for λ ∈ [0, 1]. Best case: λ = 1!
(exciting new development from MSRI...)
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Theorem (Brannan, K. 2015): For all almost-periodic
representations Ut on HR, there is a sequence of quantum groups{

O+
F (n)

}
n≥1

that has Haar distributional limit

(Γ, ϕΩ).

Exciting idea: Our new Weingarten-type calculus

is similar to

Martin Hairer’s new Feynman-type calculus

MH: quantum to classical; B-K: classical to quantum
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How do physics, the world, and the universe work?

Physics

↓ ↑

Analysis
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Why do interactions become the cubic nonlinearity?

i∂tψN =
∑
−∆xjψN + 1

N

∑∑
V (xi − xj)ψN

Particle 1 sees

1

N

N∑
j=2

V (x1 − xj) '
1

N

N∑
j=2

∫
V (x1 − y)|ϕ(y)|2dy

=
N − 1

N

∫
V (x1 − y)|ϕ(y)|2dy

N→∞−−−−→ (V ∗ |ϕ|2)(x1)


