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1995: Cornell-Wieman and Ketterle experiment
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After the trap was turned off

BEC stayed coherent like a single macroscopic quantum particle.

Momentum is concentrated after release at 50 nK. (Atomic Lab)
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The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic
nonlinear Schrodinger equation (NLS):

i0rp = =D + plp|*e

Fruitful NLS research: competition between two RHS terms
Can we rigorously connect the physics and the math?

Yes!



The outline (w/ G. Staffilani, B. Schlein, G. Ben Arous)

microscopic first principles ~~ ~- I\/Iacroscopic states

1. N bosons ~ mean-field limit ~ Hartree equation
2. N bosons ~~ localizing limit ~~ NLS
3. Quantum probability and CLTs
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A quantum “particle” is really a wavefunction

For each t, 9(x, t) € L?(R?) solves a Schrédinger equation

i0) = — Ay + Veu(x) = HY

> —A=— Z:{I:l Oyixi 2 0
> external trapping potential Vi
» solution 9(x, t) = e~ Htay(x)

» [|wol? =1 = [¢p(x,t)|? is a probability density for all t.
Exercise: why?



Particle in a box
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Vext = “00 - 1[g jc” has ground state ¢(x) = V/25sin (x)



The microscopic N-particle model

Wavefunction ¥y (x, t) = ¢n(xi, ..., xn, t) € L2(RIN) vt
solves the N-body Schrédinger equation:
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The microscopic N-particle model

Wavefunction ¥y (x, t) = ¢n(xi, ..., xn, t) € L2(RIN) vt
solves the N-body Schrédinger equation:

13t¢N—Z Ay N+ZU X; — x;)¥n = Hytw

i<j

> pair interaction potential U
» solution ¥y(x, t) = e~ HntyQ (x)

> joint density |Yn(x1, ..., Xy, t)[?
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More assumptions

For N bosons, v is symmetric (particles are exchangeable):

wN(Xa(l)a cees Xo (N t) = ¢N(X1, vy XN t) for o € Sp.

Initial data is factorized (particles i.i.d.):

N
PR(x HSOO Xj) € L2(R3M).
j=1

But interactions create correlations for t > 0.
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Mean-field pair interaction U = %

Weak: order 1/N. Long distance: V € L>(R3).
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vV

Mean-field pair interaction U = %

Weak: order 1/N. Long distance: V € L>(R3).

,atw,_z —Dgtn+ Zv

i<j

Spohn, 1980: If vy is initially factorized and approximately

factorized for all t, i.e., Yn(x,t) ~ HjN:l o(x;j, t),
then “¢oy — ¢" and ¢ solves the Hartree equation:

i0rp = — D+ (V x|} .



Convergence “1)y — " means in the sense of marginals:
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Convergence “iby — ¢" means in the sense of marginals:

N—o0
— 0,
Tr

H%(vl) - \w)@\‘

where [0} (¢](x1,X{) = F(x1)¢(x) and

one-particle marginal density 7,(\,1) = Try_1|Yn) (| has kernel

’Y/(Vl)(xl?xiaf) 12/¢N(X1,XN—1,t)wN(X{,XN—Lt)dXN—L
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Other mean-field limit theorems

Erdos and Yau, 2001: Convergence of marginals for Coulomb
interaction, V(x) = 1/|x|, not assuming approximate factorization.

Rodnianski-Schlein '08, Chen-Lee-Schlein, '11: convergence rate

9 = el < €

Preview of localizing interactions: (Vi * |0|?)e — (8 * |¢|?)¢
Erdos, Schlein, Yau, K., Staffilani, Chen, Pavlovic, Tzirakis...



Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:

{¢hn € L2(R3N)} ey exhibits Bose-Einstein condensation

into one-particle quantum state ¢ € L?(R3) iff
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Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:

{¢hn € L2(R3N)} ey exhibits Bose-Einstein condensation

into one-particle quantum state ¢ € L?(R3) iff
one-particle marginals converge in trace norm:

Y = Trn_alow) (] 2225 (o) (o).

Generalizes factorized: ¥p(x) = HN:1 ¢(x;j) is BEC into ¢.



BEC limit theorems with parameter 5 € (0, 1]
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BEC limit theorems with parameter 5 € (0, 1]

Now localized strong interactions: N¥3V/(NP(-)) — byd.

N N
1
Hy =Y —Ag+ m Y - NPV(NF(x; — ).
j=1 i<j

Theorems (Erdos-Schlein-Yau 2006-2008 d = 3
K.-Schlein-Staffilani 2009 d = 2 plane and rational tori):
Systems that are initially BEC remain condensed for all time,
and the macroscopic evolution is the NLS:

i0rp = —Ap + bolp|*p.



Our limit theorems make the physics of BEC rigorous

N N
1
Hy =) -+ 3 > - NPV(NF(x; — x))

j=1 i<j
N-body Schrod.
micro : ¢?V — VN
init. BEC | J  marg.
MACRO : g — @

NLS evolution

iOrp = — A + bolp|*p.
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Hilbert space H, set of projections P, and state ¢.

Quantum random variables (RVs) or observables: operators on H.



A taste of quantum probability (H, P, ©)

Hilbert space H, set of projections P, and state ¢.

Quantum random variables (RVs) or observables: operators on H.

The expectation of an observable A in a pure state is
B[4 = (olA) = [ e(iAp(xdx

Position observable is X()(x) := x¢(x) with density |¢]|?.



Only some probability facts have quantum analogues

Single-slit pattern

Double-slit pattern

Courtesy of Jordgette



The BEC limit theorems imply quantum LLNs

If Ais a one-particle observable and

A=1® - ®10AR1®---®1,

then for each € > 0,
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The BEC limit theorems imply quantum LLNs

If Ais a one-particle observable and

A=1® - ®10AR1®---®1,

26}20.

then for each € > 0,

534 (elAg)

Jj=1

limsup Py, {

N—oco
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BEC can explode as a bosenova

We need a control theory of BEC

» Central limit theorem for BEC (Ben Arous-K.-Schlein, 2013)

Our quantum CLT has correlations coming from interactions

» CLT for quantum groups (Brannan-K., 2015)



Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable
assumptions on the initial state @ZJ?\,, o, A, and V, then for t € R



Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable
assumptions on the initial state @Z)?w o, A, and V, then for t € R

N

1 distrib. as N— oo

Ap = —NZA —E,A) BT N(0,02).
J=
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Theorem (Ben Arous, K., Schlein, 2013): Under suitable
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N
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Our CLT for interacting quantum many-body systems

Theorem (Ben Arous, K., Schlein, 2013): Under suitable
assumptions on the initial state @Z)?w o, A, and V, then for t € R

N
1 distrib. as N—oo

A= —) (A —E,A) =277 N(0,02).

t \/Nzl( J @ ) ( t)

The variance that we would guess is correct at t = 0 only:
2 2 2
05 = Epo[AT] = (B, A)

02 has g ~ @¢.... and twisted by the Bogoliubov transform.



We studied freely independent RVs via quantum groups

(instead of random matrices) with Michael Brannan (Texas A&M)



Theorem (Brannan, K. 2015): Deformed quantum groups have
an action
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Theorem (Brannan, K. 2015): Deformed quantum groups have
an action

ASK MIKE FOR HIS ACTION FIGURE TEX CODE

on Free Araki-Woods factors

F=T(R", Up)" = {0(&) + ()" : € € Hr}"
with free quasi-free state pgq,
afc) = Z uj®cj, U= At some A > 0.

Usually a full type /1l factor for A € [0, 1]. Best case: A = 1!
(exciting new development from MSRI...)
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Theorem (Brannan, K. 2015): For all almost-periodic
representations U; on H, there is a sequence of quantum groups

{O’—'f(”) }nZI

that has Haar distributional limit

(ra ()OQ)‘

Exciting idea: Our new Weingarten-type calculus
is similar to
Martin Hairer's new Feynman-type calculus

MH: quantum to classical; B-K: classical to quantum



How do physics, the world, and the universe work?

Physics

|
Analysis
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NSF DMS-1106770, OISE-0730136, CAREER DMS-1254791

arXiv:0808.0505 (AJM), 1009.5737 (CPAM), 1111.6999 (CMP),
1505.05137(PJM)



Why do interactions become the cubic nonlinearity?

iOrpn =3 —Dyhn + 5 >0 2 V(X — x)w

Particle 1 sees

N 1

V(x1 — xj) N /V —y)le(y)Pdy
e HJ Vs

Jj=2

Z\H

V(x )|?d
N — y)le(y)|“dy

2% (W x [9l?) (xa)



