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Main Question

Can we turn the process of discovery of a scalable 
numerical  method into a UQ problem and, to some 
degree, solve it as such in an automated fashion?

Can we use a computer, not only to implement a 
numerical method but also to find the method itself?



− div(a∇u) = g, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

Ω ⊂ Rd ∂Ω is piec. Lip.

a unif. ell.
ai,j ∈ L∞(Ω)

Problem: Find a method for solving (1) 
as fast as possible to a given accuracy

log10(a)



Multigrid Methods

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

• Linear complexity with smooth coefficients

Severely affected by lack of smoothnessProblem

Rm



[Mandel et al., 1999,Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]

Robust/Algebraic multigrid

• Some degree of robustness but problem 
remains open with rough coefficients

Why?
Don’t know how to bridge scales with rough 
coefficients!

Interpolation operators are unknown

[Vassilevski - Wang, 1997, 1998]

Stabilized Hierarchical bases, Multilevel preconditioners

[Panayot - Vassilevski, 1997]

[Chow - Vassilevski, 2003]

[Panayot - 2010]

[Aksoylu- Holst, 2010]



Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987]

Hierarchical Matrix Method: [Hackbusch et al., 2002]

[Bebendorf, 2008]:

N lnd+3N complexity



Their process of discovery is based on intuition, 
brilliant insight, and guesswork

Common theme between these methods 

Can we turn this process of discovery into an algorithm?



YESAnswer:

Identify game
Find optimal 
strategy

[Owhadi 2015, Multi-grid with rough coefficients
and Multiresolution PDE decomposition from
Hierarchical Information Games, arXiv:1503.03467]

N ln2N complexityResulting method:

Compute fast

This is a theorem

Compute with 
partial information

Play adversarial 
Information game



Resulting method:

H1
0 (Ω) =W

(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

For v ∈W(k)

C1
2k
≤ kvka

k div(a∇v)kL2(Ω)
≤ C2

2k

Theorem

< ψ,χ >a:=
R
Ω
(∇ψ)Ta∇χ = 0 for (ψ,χ) ∈W(i) ×W(j), i 6= j

kvk2a :=< v, v >a=
R
Ω
(∇v)T a∇v

Looks like an eigenspace decomposition



Quacks like an eigenspace decomposition

w(k) = F.E. sol. of PDE in W(k)

Can be computed independently

B(k): Stiffness matrix of PDE in W(k)

Theorem λmax(B
(k))

λmin(B(k))
≤ C

Just relax in W(k) to find w(k)

u = w(1) + w(2) + · · ·+ w(k) + · · ·



u
=

w(1) w(2) w(3)

w(4) w(5) w(6)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of solution space

Solve time-discretized wave equation (implicit time steps)
with rough coefficients in O(N ln2N)-complexity

Swims like an eigenspace decomposition



Doesn’t  have the complexity of an eigenspace decomposition

Theorem

Can be performed and stored in

V: F.E. space of H1
0 (Ω) of dim. N

V =W(1) ⊕aW(2) ⊕a · · ·⊕aW(k)

The decomposition

O(N ln2N) operations



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator

and locally analyze the solution space



u

H−1(Ω)H1
0 (Ω)

um gm

div(a∇·)

g

Inverse Problem

Reduced operator

∈ RmRm
Numerical implementation requires
computation with partial information.

um ∈ Rm u ∈ H1
0 (Ω)

Missing information

φ1, . . . ,φm ∈ L2(Ω)
um = ( Ω φ1u, . . . , Ω φmu)



Discovery process (
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

φ1, . . . ,φm ∈ L2(Ω)

u− u∗
a

Player A Player B
Chooses
g ∈ L2(Ω) Sees

Ω
uφ1, . . . , Ω uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1

Max Min

Identify underlying 
information game

Measurement functions:

kfk2a :=
R
Ω
(∇f)T a∇f



Player A

Player B

3

1

-2

-2

Deterministic zero sum game

Player A’s payoff

Player A & B both have a blue and a red marble
At the same time, they show each other a marble

How should A & B play the (repeated) game?



Game theory

John Von Neumann

John Nash

Player A

Player B

3

1

-2

-2
A’s expected payoff
= 3pq + (1− p)(1− q)− 2p(1− q)− 2q(1− p)
=1− 3q + p(8q − 3) =− 1

8 for q = 3
8

q 1− q

p

1− p

Optimal strategies 
are mixed strategies

Optimal way to
play is at random



Abraham Wald

The best strategy for A is to play at random
Player B’s best strategy live 

in the Bayesian class of estimators 

Player A Player B
Chooses
g ∈ L2(Ω) Sees

R
Ω
uφ1, . . . ,

R
Ω
uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1

Continuous game but as in decision theory
under compactness it can be approximated
by a finite game

°°u− u∗°°
a



Player B’s class of mixed strategies

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ: Random field

u∗(x) := E
£
v(x)

¯̄ R
Ω
v(y)φi(y) dy =

R
Ω
u(y)φi(y) dy,∀i

¤Player B’s bet

g ∈ L2(Ω)
Pretend that player A  is choosing g at random

Player B’s best bet? min max problem
over distribution of ξ

Player’s B optimal strategy?



Theorem

ψi(x) := Eξ∼N (0,Γ)
h
v(x)

¯̄̄ R
Ω
v(y)φj(y) dy = δi,j , j ∈ {1, . . . ,m}

i
ψi: Elementary gambles/bets

ψi
Gamblets

Elementary gambles form deterministic 
basis functions for  player B’s bet

Player B’s bet if
R
Ω
uφj = δi,j , j = 1, . . . ,m

u∗(x) =
Pm

i=1 ψi(x)
R
Ω
u(y)φi(y) dy

ξ ∼ N (0,Γ)Computational efficiency



Depend onWhat are these gamblets?

Example

Γ(x, y) = δ(x− y)
φi(x) = δ(x− xi)

Ω

xi

x1

xm

a = Id ψi: Polyharmonic splines
[Harder-Desmarais, 1972][Duchon 1976, 1977,1978]

ai,j ∈ L∞(Ω) ψi: Rough Polyharmonic splines
[Owhadi-Zhang-Berlyand 2013]

• Γ: Covariance function of ξ (Player B’s decision)
• (φi)mi=1: Measurements functions (rules of the game)

[Owhadi, 2014]
arXiv:1406.6668



What is Player B’s best choice for

Γ(x, y) = E
£
ξ(x)ξ(y)

¤
What is Player B’s best strategy?

Γ = L
L = − div(a∇·)

R
Ω
ξ(x)f(x) dx ∼ N (0, kfk2a)

kfk2a :=
R
Ω
(∇f)Ta∇f

Why? See algebraic generalization

?



Theorem

u∗(x) is the F.E. solution of (1) in span{L−1φi|i = 1, . . . ,m}
ku− u∗ka = infψ∈span{L−1φi:i∈{1,...,m}} ku− ψka

If Γ = L then

The recovery is optimal (Galerkin projection)

L = − div(a∇·)(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)



Theorem ψi: Unique minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Ω) and
R
Ω
φjψ = δi,j , j = 1, . . . ,m

Pm
i=1 wiψi minimizes kψka

over all ψ such that
R
Ω
φjψ = wj for j = 1, . . . ,m

Theorem
Optimal variational properties

Variational characterization



Selection of measurement functions

Theorem ku− u∗ka ≤ H
λmin(a)

kgkL2(Ω)

φi = 1τi τi

Ω

diam(τi) ≤ H

τj

Indicator functions of aExample

Partition of Ω of resolution H



Elementary gamble

ψi

(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)

Your best bet on the value of u

τi

Ωτj

1
0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

given the information thatR
τi
u = 1 and

R
τj
u = 0 for j 6= i



Exponential decay of gamblets

TheoremR
Ω∩(B(τi,r))c(∇ψi)

Ta∇ψi ≤ e−
r
lH kψik2a

x-axis slice

ψi

ψi

log10
¡
10−10 + |ψi||

¢x-axis slice

4

−10

r

Ω

τi



r

Ω

τi
Sr

Theorem

ku− u∗,locka ≤ 1√
λmin(a)

HkgkL2(Ω)

u∗,loc(x) =
Pm

i=1 ψ
loc,r
i (x)

R
Ω
u(y)φi(y) dy

If r ≥ CH ln 1
H

No loss of accuracy if
localization ∼ H ln 1

H

ψloc,ri : Minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Sr) and
R
Sr

φjψ = δi,j

for τj ∈ Sr

Localization  of the 
computation of gamblets



Formulation of the hierarchical game



Hierarchy of nested Measurement functions

φ
(1)
2 = 1

τ
(1)
2

φ
(2)
2,3 = 1τ(2)2,3

φ
(k)
i1,...,ik

with k ∈ {1, . . . , q}
φ
(k)
i =

P
j ci,jφ

(k+1)
i,j

τ
(1)
2 τ

(2)
2,3

τ
(3)
2,3,1

φ
(3)
2,3,1 = 1τ(3)2,3,1

Example

φ
(1)
i1

φ
(2)
i1,j1

φ
(2)
i1,j2

φ
(2)
i1,j3

φ
(2)
i1,j4

φ
(3)
i1,j2,k1

φ
(3)
i1,j2,k2

φ
(3)
i1,j2,k3

φ
(3)
i1,j2,k4

φ
(k)
i : Indicator functions of a
hierarchical nested partition of Ω of resolution Hk = 2

−k



i
Π1,2i

I1 I2 I3

j ∈ Π1,2i ⊂ Π2I Π2,3j

Π1,3i

τ
(1)
i τ

(2)
j

φ
(1)
i φ

(2)
i φ

(3)
i

φ
(4)
i φ

(5)
i φ

(6)
i

In the discrete setting simply aggregate elements
(as in algebraic multigrid)



Player A Player B
Chooses
g ∈ L2(Ω)

Formulation of the hierarchy of games

kgkL2(Ω) ≤ 1

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

Must predict

Sees {
Ω
uφ

(k)
i , i ∈ Ik}

u and {
Ω
uφ

(k+1)
j , j ∈ Ik+1}



Player B’s best strategy(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ ∼ N (0,L)

u(k)(x) := E
£
v(x)

¯̄ R
Ω
v(y)φ

(k)
i (y) dy =

R
Ω
u(y)φ

(k)
i (y) dy, i ∈ Ik

¤Player B’s bets

Fk = σ(
R
Ω
vφ

(k)
i , i ∈ Ik) v(k)(x) := E

£
v(x)

¯̄
Fk
¤

Theorem Fk ⊂ Fk+1
v(k)(x) := E

£
v(k+1)(x)

¯̄
Fk
¤

The sequence of approximations forms a martingale under 
the mixed strategy emerging from the game



Accuracy of the recovery

Theorem ku− u(k)ka ≤ Hk

λmin(a)
kgkL2(Ω)

Hk := maxi diam(τ
(k)
i )

φ
(k)
i = 1

τ
(k)
i

τ
(k)
i

diam(τ
(k)
i ) ≤ Hk



u(1) u(2) u(3)

u(4) u(5) u(6)

log10
ku−u(k)ka

kuka

log10
ku−u(k)ka
kuka

−3.5 −12k k

In a discrete setting the last step of the game recovers 
the solution to numerical precision



Gamblets Elementary gambles form a hierarchy of deterministic 
basis functions for  player B’s hierarchy of bets

Theorem u(k)(x) =
P

i ψ
(k)
i (x)

R
Ω
u(y)φ

(k)
i (y) dy

ψ
(k)
i : Elementary gambles/bets at resolution Hk = 2

−k

ψ
(k)
i (x) := E

h
v(x)

¯̄̄ R
Ω
v(y)φ

(k)
j (y) dy = δi,j , j ∈ Ik

i
ψ
(1)
i ψ

(2)
i ψ

(3)
i

ψ
(4)
i ψ

(5)
i ψ

(6)
i



Theorem

V(k) ⊂ V(k+1)

V(k) := span{ψ(k)i , i ∈ Ik} ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

ψ
(3)
i1,j2,k1

ψ
(3)
i1,j2,k2

ψ
(3)
i1,j2,k3

ψ
(3)
i1,j2,k4

Gamblets are nested

ψ
(k)
i (x) =

P
j∈Ik+1 R

(k)
i,j ψ

(k+1)
j (x)



R
(k)
i,j = E

£ R
Ω
v(y)φ

(k+1)
j (y) dy

¯̄ R
Ω
v(y)φ

(k)
l (y) dy = δi,l, l ∈ Ik

¤Interpolation/Prolongation operator

1
0 0

0

R
(k)
i,j

Your best bet on the value of
R
τ
(k+1)
j

u

given the information thatR
τ
(k)
i
u = 1 and

R
τl
u = 0 for l 6= i

τ
(k)
i R

(k)
i,j

τ
(k+1)
j



At this stage you can finish with
classical multigrid 

But we want multiresolution decomposition



Elementary gamble

Ω

0
0

0

χ
(k)
i

0

0
0

0
0τ

(k)
i τ

(k)
j

0
0

0
0

Your best bet on the value of u

given the information thatR
τ
(k)
i

u = 1,
R
τ
(k)

i−
u = −1 and

R
τ
(k)
j

u = 0 for j 6= i

1
0
0

-1

τ
(k)
i−



+1−1

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−

+1

−1
+1−1

i = (i1, . . . , ik−1, ik)

i− = (i1, . . . , ik−1, ik − 1)

ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

+1−1



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−



Theorem

W(k+1): Orthogonal complement of V(k) in V(k+1)

with respect to < ψ,χ >a:=
R
Ω
(∇ψ)T a∇χ

H1
0 (Ω) = V

(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

Multiresolution decomposition of the solution space 

V(k) := span{ψ(k)i , i ∈ Ik}
W(k) := span{χ(k)i , i}



Theorem

u(k+1) − u(k) = F.E. sol. of PDE in W(k+1)

u
=

u(1) u(2) − u(1) u(3) − u(2)

u(4) − u(3) u(5) − u(4) u(6) − u(5)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of the solution

Subband solutions u(k+1) − u(k)
can be computed independently



Uniformly bounded condition numbers

A
(k)
i,j :=


ψ
(k)
i ,ψ

(k)
j

®
a

B
(k)
i,j :=


χ
(k)
i ,χ

(k)
j

®
a

4.5
log10(

λmax(A
(k))

λmin(A(k))
)

log10(
λmax(B

(k))
λmin(B(k))

)

Theorem
λmax(B

(k))

λmin(B(k))
≤ C

Just relax!
In v ∈W(k)

to get
u(k) − u(k−1)



c
(1)
i

c
(2)
j

c
(3)
j

c
(4)
j
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j

u =
P

i c
(1)
i

ψ
(1)
i

kψ(1)i ka
+
Pq

k=2

P
j c
(k)
j

χ
(k)
j

kχ(k)j ka

0 1000 2000 3000 4000
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4
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Coefficients of the solution in the gamblet basis

c
(6)
j



Operator Compression

Throw 99% of the coefficients

u

Gamblets behave like wavelets but they are adapted to the 
PDE and can compress its solution space

Gamblet compression

Compression ratio = 105
Energy norm relative error = 0.07



Fast gamblet transform

Nesting A(k) = (R(k,k+1))TA(k+1)R(k,k+1)

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

ψ
(k)
i = ψ

(k+1)
(i,1) +

P
j C

(k+1),χ
i,j χ

(k+1)
j C(k+1),χ = (B(k+1))−1Z(k+1)

Localization
Z
(k+1)
j,i := −(e(k+1)j − e(k+1)j− )TA(k+1)e

(k+1)
(i,1)

Underlying linear systems have uniformly bounded 
condition numbers

The nested computation can be localized without  
compromising accuracy or condition numbers

O(N ln2N) complexity



u(3) − u(2)8× 10−3

u(2) − u(1)0.03

u(1)0.14

.
.
.

u(1)

ϕi, A
h,Mh χ

(q)
i , B

(q)ψ
(q)
i , A(q) u(q) − u(q−1)

ψ
(q−1)
i , A(q−1) χ

(q−1)
i , B(q−1) u(q−1) − u(q−2).

.
.

.
.
.

χ
(3)
i , B(3)ψ

(3)
i , A(3) u(3) − u(2)

ψ
(2)
i , A(2) χ

(2)
i , B(2) u(2) − u(1)

ψ
(1)
i , A(1)

ψ
(1)
i

χ
(2)
i

χ
(3)
i

ψ
(1)
i

ψ
(2)
i

ψ
(3)
i

Parallel 
operating
diagram 

both in space 
and in

frequency


