Evaluate the following integrals.

1. \[\int \frac{x^2 + 2}{x^2} \, dx \]

2. \[\int \sin^2 3x \cos 3x \, dx \]

3. \[\int \frac{1}{x \ln x} \, dx \]

4. \[\int \frac{3}{x^2 + 2x + 1} \, dx \]

5. \[\int_{-\pi}^{\pi} \sin^2 x \, dx \]

6. \[\int xe^{(x^2-1)} \, dx \]

7. A) Write TWO definite integrals (one with respect to x, the other with respect to y) which represent the area, \(\Omega \), bound between the graphs of \(f \) and \(g \)

\[f(x) = \sqrt{x} \quad g(x) = \frac{1}{3} x \]
B) Find the volume of the solid generated by rotating Ω about the x-axis

C) Determine a definite integral which represents the volume of the solid generated by rotating the area Ω about the y-axis.

8. Find the volume obtained by rotating the region bounded by
 \[y = \ln x, \quad y = 2, \quad x = 0, \quad y = 0 \]
 about the y-axis

9. Use the shell method to determine the volume obtained by rotating the region bounded by
 \[f(x) = x^2, \quad g(x) = 2x \]
 about the x-axis

Integration by parts practice:

10. \[\int x \cos 3x \, dx \]

11. \[\int \frac{\ln x}{x^3} \, dx \]

12. \[\int e^x \sin x \, dx \]

Trigonometric Integrals practice:

13. \[\int \sin^3 x \cos^2 x \, dx \]

14. \[\int \cos^2 x \sin 2x \, dx \]

15. \[\int \tan^3 x \sec x \, dx \]