? e=ellinit([0,0,0,Mod(1,11),Mod(2,11)]) %1 = [0, 0, 0, Mod(1, 11), Mod(2, 11), 0, Mod(2, 11), Mod(8, 11), Mod(10, 11), Mod(7, 11), Mod(10, 11), Mod(1, 11), Mod(2, 11), 0, 0, 0, 0, 0, 0] ? for(x=0,10,for(y=0,10,P=[Mod(x,11),Mod(y,11)];if(ellisoncurve(e,P),print(P)))) [Mod(1, 11), Mod(2, 11)] [Mod(1, 11), Mod(9, 11)] [Mod(2, 11), Mod(1, 11)] [Mod(2, 11), Mod(10, 11)] [Mod(4, 11), Mod(2, 11)] [Mod(4, 11), Mod(9, 11)] [Mod(5, 11), Mod(0, 11)] [Mod(6, 11), Mod(2, 11)] [Mod(6, 11), Mod(9, 11)] [Mod(7, 11), Mod(0, 11)] [Mod(8, 11), Mod(4, 11)] [Mod(8, 11), Mod(7, 11)] [Mod(9, 11), Mod(5, 11)] [Mod(9, 11), Mod(6, 11)] [Mod(10, 11), Mod(0, 11)] ? P=[Mod(2,11),Mod(10,11)] %2 = [Mod(2, 11), Mod(10, 11)] ? ellisoncurve(e,P) %3 = 1 ? ellpow(e,P,2) %4 = [Mod(8, 11), Mod(7, 11)] ? ellpow(e,P,3) %5 = [Mod(4, 11), Mod(2, 11)] ? elladd(e,P,%4) %6 = [Mod(4, 11), Mod(2, 11)] ? ellap(e) %7 = -4 ? n=11+1+% %8 = 8 ? n=11+1-%7 %9 = 16 ? ellpow(e,P,16) %10 = [0] ? ellpow(e,P,4) %11 = [Mod(10, 11), Mod(0, 11)] ? ellpow(e,P,8) %12 = [0] ? P %13 = [Mod(2, 11), Mod(10, 11)] ? for(n=1,8,print(ellpow(e,P,n))) [Mod(2, 11), Mod(10, 11)] [Mod(8, 11), Mod(7, 11)] [Mod(4, 11), Mod(2, 11)] [Mod(10, 11), Mod(0, 11)] [Mod(4, 11), Mod(9, 11)] [Mod(8, 11), Mod(4, 11)] [Mod(2, 11), Mod(1, 11)] [0] ? Q=[Mod(5,11),Mod(0,11)] %14 = [Mod(5, 11), Mod(0, 11)] ? elladd(e,P,Q) %15 = [Mod(9, 11), Mod(6, 11)] ? for(n=1,8,print(elladd(e,ellpow(e,P,n),Q))) [Mod(9, 11), Mod(6, 11)] [Mod(1, 11), Mod(2, 11)] [Mod(6, 11), Mod(2, 11)] [Mod(7, 11), Mod(0, 11)] [Mod(6, 11), Mod(9, 11)] [Mod(1, 11), Mod(9, 11)] [Mod(9, 11), Mod(5, 11)] [Mod(5, 11), Mod(0, 11)] ? \rCursos/343L.13/bitcoin.gp ? p=2^256-2^32-2^9-2^8-2^7-2^6-2^4-1 %16 = 115792089237316195423570985008687907853269984665640564039457584007908834671663 ? e=ellinit(Mod(1,p)*[0,0,0,0,7]) %17 = [Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(7, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(28, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(115792089237316195423570985008687907853269984665640564039457584007908834665615, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(115792089237316195423570985008687907853269984665640564039457584007908834650495, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), 0, 0, 0, 0, 0, 0] ? g=[Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240,115792089237316195423570985008687907853269984665640564039457584007908834671663),Mod(32670510020758816978083085130507043184471273380659243275938904335757337482424,115792089237316195423570985008687907853269984665640564039457584007908834671663)] %18 = [Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(32670510020758816978083085130507043184471273380659243275938904335757337482424, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? G %19 = G ? g %20 = [Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(32670510020758816978083085130507043184471273380659243275938904335757337482424, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? e %21 = [Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(7, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(28, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(115792089237316195423570985008687907853269984665640564039457584007908834665615, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(115792089237316195423570985008687907853269984665640564039457584007908834650495, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663), 0, 0, 0, 0, 0, 0] ? p %22 = 115792089237316195423570985008687907853269984665640564039457584007908834671663 ? ellisoncurve(e,g) %23 = 1 ? ellpow(e,g,8382388928339297327372781982771828) %24 = [Mod(9363958337619339877455955832502193911636772919858359641909537275401830838135, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(80038749046395693117708054566330572904936611978587840902722944932012599664696, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? ellap(e) %25 = 432420386565659656852420866390673177327 ? n=p+1-% %26 = 115792089237316195423570985008687907852837564279074904382605163141518161494337 ? ellpow(e,g,n) %27 = [0] ? isprime(n) %28 = 1 ? g %29 = [Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(32670510020758816978083085130507043184471273380659243275938904335757337482424, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? issquare(Mod(1,p)^3+Mod(7,p),&y) %30 = 1 ? y %31 = Mod(29896722852569046015560700294576055776214335159245303116488692907525646231534, 115792089237316195423570985008687907853269984665640564039457584007908834671663) ? h=[Mod(1,p),y] %32 = [Mod(1, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(29896722852569046015560700294576055776214335159245303116488692907525646231534, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? ellisoncurve(e,h) %33 = 1 ? for(x=1,20,ifissquare(Mod(x,p)^3+Mod(7,p)),print(x)) *** too many arguments: ...are(Mod(x,p)^3+Mod(7,p)),print(x)) *** ^--------- ? for(x=1,20,if(issquare(Mod(x,p)^3+Mod(7,p)),print(x))) 1 2 3 4 6 8 12 13 14 16 20 ? issquare(Mod(2,p)^3+Mod(7,p),&y) %34 = 1 ? k=[Mod(2,p),y] %35 = [Mod(2, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(46580984542418694471253469931035885126779956971428003686700937153791839982430, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? ellisoncurve(e,k) %36 = 1 ? elladd(e,h,k) %37 = [Mod(6229588549486259819305920621984993562998356423740097654874267457020397458585, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(36292416413292293100184136570770513527529562975075548635839627194334289071908, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? g %38 = [Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(32670510020758816978083085130507043184471273380659243275938904335757337482424, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? ellpow(e,g,-1) %39 = [Mod(55066263022277343669578718895168534326250603453777594175500187360389116729240, 115792089237316195423570985008687907853269984665640564039457584007908834671663), Mod(83121579216557378445487899878180864668798711284981320763518679672151497189239, 115792089237316195423570985008687907853269984665640564039457584007908834671663)] ? \q