? for(j=0,6,print(Mod(2,1729)^(2^j*27)))
Mod(645, 1729)
Mod(1065, 1729)
Mod(1, 1729)
Mod(1, 1729)
Mod(1, 1729)
Mod(1, 1729)
Mod(1, 1729)
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^1728!=Mod(1,1729),print(a)))
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/2)!=Mod(1,1729),print(a)))
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/4)!=Mod(1,1729),print(a)))
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/8)!=Mod(1,1729),print(a)))
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/16)!=Mod(1,1729),print(a)))
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/32)!=Mod(1,1729),print(a)))
2
5
6
8
[snip...]
1721
1723
1724
1727
? for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/32)!=Mod(1,1729),print(a)))
2
5
6
8
[snip...]
1721
1723
1724
1727
? 1728/32
%9 = 54
? r=0;for(a=1,1728,if(gcd(a,1729)==1&&Mod(a,1729)^(1728/32)!=Mod(1,1729),r++));r
%10 = 648
? eulerphi(1729)
%11 = 1296
? \q