?2+3
%1 = 5
?factor(18383737373773727282991209202020222112222222111)
%2 = 
[3 1]

[11 1]

[13 1]

[231114187 1]

[21092986417 1]

[53128852859 1]

[165455572072019 1]

?gcd(173737372372727272,282818180920202020221111)
%3 = 1
?bezout(173737372372727272,282818180920202020221111)
%4 = [-24662433496369401212531, 15150321588361103, 1]
?%4[1]*173737372372727272+%4[2]*282818180920202020221111
%5 = 1
?v=[173737372372727272,282818180920202020221111]
%6 = [173737372372727272, 282818180920202020221111]
?v[1]
%7 = 173737372372727272
?v[2]
%8 = 282818180920202020221111
?v[1]*v[2]
%9 = 49136087612310489748696032746195539839192
?gcd(v[1],v[2])
%10 = 1
?%2[3,1]
%11 = 13
?%2[3,2]
%12 = 1
?%2[5,2]
%13 = 1
?%2[5,1]
%14 = 21092986417
?factor(18)
%15 = 
[2 1]

[3 2]

?w=factor(18)
%16 = 
[2 1]

[3 2]

?w[1,]
%17 = [2, 1]
?w[,1]
%18 = [2, 3]~
?w[,1]~
%19 = [2, 3]
??
Help topics: for a list of relevant subtopics, type ?n for n in
  0: user-defined functions (aliases, installed and user functions)
  1: Standard monadic or dyadic OPERATORS
  2: CONVERSIONS and similar elementary functions
  3: TRANSCENDENTAL functions
  4: NUMBER THEORETICAL functions
  5: Functions related to ELLIPTIC CURVES
  6: Functions related to general NUMBER FIELDS
  7: POLYNOMIALS and power series
  8: Vectors, matrices, LINEAR ALGEBRA and sets
  9: SUMS, products, integrals and similar functions
 10: GRAPHIC functions
 11: PROGRAMMING under GP
 12: The PARI community

Also:
  ? functionname (short on-line help)
  ?\             (keyboard shortcuts)
  ?.             (member functions)
Extended help (if available):
  ??             (opens the full user's manual in a dvi previewer)
  ??  tutorial / refcard / libpari (tutorial/reference card/libpari manual)
  ??  keyword    (long help text about "keyword" from the user's manual)
  ??? keyword    (a propos: list of related functions).
??4

addprimes     bestappr      bezout        bezoutres     bigomega      binomial
chinese       content       contfrac      contfracpnqn  core          coredisc
dirdiv        direuler      dirmul        divisors      eulerphi      factor
factorback    factorcantor  factorff      factorial     factorint     factormod
ffgen         ffinit        fflog         fforder       ffprimroot    fibonacci
gcd           hilbert       isfundamental ispower       isprime       ispseudoprime
issquare      issquarefree  kronecker     lcm           moebius       nextprime
numbpart      numdiv        omega         partitions    polrootsff    precprime
prime         primepi       primes        qfbclassno    qfbcompraw    qfbhclassno
qfbnucomp     qfbnupow      qfbpowraw     qfbprimeform  qfbred        qfbsolve
quadclassunit quaddisc      quadgen       quadhilbert   quadpoly      quadray
quadregulator quadunit      removeprimes  sigma         sqrtint       stirling
sumdedekind   zncoppersmith znlog         znorder       znprimroot    znstar

??bezout
bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.

??bezout
bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.

?isprime(3774874874874773878743878378383773374439811)
%20 = 0
?factor(3774874874874773878743878378383773374439811)
%21 = 
[17 1]

[25013 1]

[71549 1]

[3360433939 1]

[36922315221269493424481 1]

?3^10000
%22 = 1631350185342625874303256729181154716812132453582537993934820326191825730814319078748015563084784830967325204522323579543340558299917720385238147914536811250145319235516622439102542362884355668655965964501201417744827552999037327442544642575123553734186738760781361993722561687286201650480559317405990952046166850066311892691157177345225585062696852625187913986708508047253964093373024341015218691432891735457685445727419556221801333774562850247067305942699911420254077317598819984248727618368529938892782529678644025299944478569418367532352170443219578580627012338838293177019899084130086150699610894478206501516341034489494580933768915680768667346256303816479219066534012434413398076320559436475496345156407234050260637779058511412381491900163717703445738501993906023292519447111423589297856532241562834414218484289208346622787576050127600980153070303752583915789387574119249770530046969106245436992679597545634023677773435466713907260157496983431276965355718439614758707126044394794486223574445971120447306293776415377003021033218363553181817345661802274597505531321259851442958754554729653460959719483603654687049177192762521435295750345494840363582234572877488517580950015845183738941379809532971199309210141742840677432612645000546788873654625494865860248449453593888865654274697742436838533549608316492131860193497702509578037010430798027635685735034920586607837180606554239353610167340201798095159894698066433039150584580367424834887807101041291866733582384989962348621505030405257778984851241026383481171923694931142341182358531640508530616493667113745698539428567732477177504605097086552089359615168701715385575519734819965907019295477130834762711105247113447632598636283858595955220964538208905518287185486674463373753321752488011840178759509406085571701014408713649553241854424148943708007471615840489591413645180203244670796105875763334569169674329386962374541087005185159067285934706121257344657204508846546061682608257973168600458521828433345239615773003630637942182243581800150590520391820920696966232670695262351242738024046878411453510149673398340124021984004895673368930962032161379375715672756246165193339754026679596386592159091332206057267334984925330339787424238196077533718273003778369870874878173841974769888032160118631050633286970493130307683944479096833930630127337101408724806094685179369797311443270675928854607762283100252680055484969686771028094594660366959379735464213662223119269502732122951191295294032087976312315176055595949696116314145568827884294958728839910027369188001877414756889265018615206533521911307258241769961690199553024993773521909978675895489253436583523584315611279972816412346121981734390478240251711160320657533052785075256464299531806498590081555797994588593112435130325281125525429579708228194665879870597907749246984964418316658595084495316472689614616829780817839847045156132052618054231084074484310746936895970772683660847181706059877173017075544647344077403137122743765104842160622475752708595851594727315102740066294816111128477782810353149948891367280078316788805117715542728510386173665806940479769590075882046523867397088266016228510759922141874365700687253784267788370880751585039769181243388056177265236484729701950802584896483388322516566898693508127459629398312186404627726859040158020905998850051126247016715049526190813668869386132408155904633628896303709031203352240072236088249492818280907540691431995704492750442079727811783767743144697908575643299075358258810244024061103908451640108994886843335374844410463973407451916506763294141934798562443556734207281591075448412381291748731293828067040322818881300397838408133224248464657141757440485296267516561610152736742565486950871200178839384617178045745596304576494356596488751839648129615990247199673550885429296453679677940437723096572336162518203079829773478585460606032341909164671113867849092884010744992[+++]
??default
default({key},{val}): returns the current value of the default key. If val is present, set opt 
to val first. If no argument is given, print a list of all defaults as well as their values.

?3^10000%101
%23 = 1
?3^10000%103
%24 = 81
?Mod(3,101)^10000
%25 = Mod(1, 101)
?3^100000000000%103
at top-level: ^100000000000%103
               ^-----------------
  *** _^s: the PARI stack overflows !
  current stack size: 8000000 (7.629 Mbytes)
  [hint] you can increase GP stack with allocatemem()

  ***   Break loop: type 'break' to go back to GP
break> break

?allocatemem()
  ***   Warning: new stack size = 16000000 (15.259 Mbytes).
?allocatemem()
  ***   Warning: new stack size = 32000000 (30.518 Mbytes).
?allocatemem()
  ***   Warning: new stack size = 64000000 (61.035 Mbytes).
?allocatemem()
  ***   Warning: new stack size = 128000000 (122.070 Mbytes).
?allocatemem()
  ***   Warning: new stack size = 256000000 (244.141 Mbytes).
?3^100000000000%103
at top-level: ^100000000000%103
               ^-----------------
  *** _^s: the PARI stack overflows !
  current stack size: 256000000 (244.141 Mbytes)
  [hint] you can increase GP stack with allocatemem()

  ***   Break loop: type 'break' to go back to GP
break>break

?Mod(3,103)^100000000000
%26 = Mod(76, 103)
?Mod(3^100000000000,103)
at top-level: ^100000000000,103)
                   ^------------------
  *** _^s: the PARI stack overflows !
  current stack size: 256000000 (244.141 Mbytes)
  [hint] you can increase GP stack with allocatemem()

  ***   Break loop: type 'break' to go back to GP
at top-level: ^100000000000,103)
                   ^------------------
  *** _^s: user interrupt after 
at top-level: ^100000000000,103)
                   ^------------------
break> break

?Mod(3723727277272727272727272,1039299292929292929292)^10000000000000000
%27 = Mod(652690466722500883612, 1039299292929292929292)
?Mod(3,101)*(Mod(5,101)
syntax error, unexpected $end, expecting )-> or ',' or ')': )
                                                                                 ^-
?Mod(3,101)*Mod(5,101)
%28 = Mod(15, 101)
?Mod(3,101)*Mod(5,103)
%29 = Mod(0, 1)
?for(n=1,10,print(Mod(3,1001)^n))
Mod(3, 1001)
Mod(9, 1001)
Mod(27, 1001)
Mod(81, 1001)
Mod(243, 1001)
Mod(729, 1001)
Mod(185, 1001)
Mod(555, 1001)
Mod(664, 1001)
Mod(991, 1001)
?for(n=1,10,print(n,"hello ",Mod(3,1001)^n))
1hello Mod(3, 1001)
2hello Mod(9, 1001)
3hello Mod(27, 1001)
4hello Mod(81, 1001)
5hello Mod(243, 1001)
6hello Mod(729, 1001)
7hello Mod(185, 1001)
8hello Mod(555, 1001)
9hello Mod(664, 1001)
10hello Mod(991, 1001)
?for(n=1,1000,if(Mod(3,1001)^n==Mod(1,1001),print(n)))
30
60
90
120
150
180
210
240
270
300
330
360
390
420
450
480
510
540
570
600
630
660
690
720
750
780
810
840
870
900
930
960
990
?for(n=1,1000,if(Mod(3,1001)^n==Mod(1,1001),print(n);break))
30
?znorder(Mod(3,1001))
%30 = 30
??znorder
znorder(x,{o}): order of the integermod x in (Z/nZ)*. Optional o represents a multiple of the 
order of the element.

?p=nextprime(100000000)
%31 = 100000007
?znprimroot(p)
%32 = Mod(5, 100000007)
?lift(%)
%33 = 5
??zeta
zeta(s): Riemann zeta function at s with s a complex or a p-adic number.

?zeta(2)
%34 = 1.6449340668482264364724151666460251892
?Pi^2/6
%35 = 1.6449340668482264364724151666460251892
?myfunction(p)=if(isprime(p),return(znprimroot(p)^2))
%36 = (p)->if(isprime(p),return(znprimroot(p)^2))
?myfunction(100)
?myfunction(101)
%37 = Mod(4, 101)
?\rmyfile
  ***   error opening input file: `myfile'.
  ***   Break loop: type 'break' to go back to GP
break>break

?\q
?for(n=1,10,if(n%2==0&&n%3==0,print(n," yes"),print(n," no")))
1 no
2 no
3 no
4 no
5 no
6 yes
7 no
8 no
9 no
10 no
?for(n=1,10,if(n%2==0||n%3==0,print(n," yes"),print(n," no")))
1 no
2 yes
3 yes
4 yes
5 no
6 yes
7 no
8 yes
9 yes
10 yes
?\q