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Let R be a ring (commutative with unity in what follows) and D a subset of R. A

standard construction in Commutative Algebra is the localization of R at D or ring of

fractions of R with denominators in D, defined to be the universal ring to which R maps

in such a way that the elements of D map to units. Uniqueness up to isomorphism is clear

but one needs to show existence.

The standard construction of this ring is as follows (see e.g. [M]). First, one assumes

that D is multiplicatively closed, (that is, finite products of elements of D are also in D)

since the ring of fractions of R with denominators in D is the same as the ring of fractions

of R with denominators in the smallest multiplicatively closed subset of R containing D

(which will be denoted by D̄). Then one considers the equivalence relation on R×D given

by (a, b) ∼ (c, d) if and only if there exists t ∈ D such that t(ad− bc) = 0. The equivalence

class of (a, b) is denoted by a/b. Addition and multiplication are then defined by the usual

rules for fractions a/b+ c/d = (ad+ bc)/bd, (a/b)(c/d) = ac/bd. One is of course left with

the task of showing that these operations are well-defined and make the set of equivalence

classes into a ring. It would be nice if R×D were a ring and the equivalence relation were

given by an ideal, but this is far from being the case, as the reader can check.

The purpose of this note is to give an alternative construction of the ring of fractions

by exhibiting it as a quotient of a suitable ring by an ideal. We will not need the assumption

that D is multiplicatively closed.

Theorem 1. Let R be a ring and D a subset of R. There exists a ring Q of fractions of R

with denominators in D. Moreover, if φ : R → Q is the the canonical map then φ(r) is a

zero divisor inQ only if r is a zero divisor inR and the kernel of φ is {r ∈ R|∃d ∈ D̄, dr = 0}.

Proof: Let S = R[xd | d ∈ D] (that is, the polynomial ring in as many variables as

elements of D) and I = (dxd − 1 | d ∈ D), which is an ideal of S. We define Q as S/I.

Clearly there is a map φ : R→ Q, corresponding to the inclusion R ⊂ S. By construction,
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the image of xd in Q is an inverse of φ(d) so φ(D) ⊂ Q∗. If ψ : R→ T is a homomorphism,

for some ring T , with ψ(D) ⊂ T ∗ we define a homomorphism θ : S → T by letting θ = ψ

on R and θ(xd) = ψ(d)−1, clearly I ⊂ ker θ, so θ induces a homomorphism θ̄ : Q → T

which satisfies θ̄ ◦ φ = ψ, as desired.

To prove the remaining statements, note that the condition that φ(r) is a zero divisor

in Q (or φ(r) = 0) will be expressed by a relation in S which will only involve finitely many

variables, so we may assume that D is finite with n elements and proceed by induction on

n. If D′ = D ∪ {d}, then the ring of fractions of R with denominators in D′ is the ring of

fractions of Q with denominators in {d} and this reduces the induction step to the case

n = 1 which we proceed to do.

Suppose D = {d} and write x for xd. If φ(r) is a zero divisor in Q, then there exists

t ∈ Q, t 6= 0, tφ(r) = 0 and therefore there exists polynomials t(x), s(x) ∈ R[x] with

rt(x) = (dx− 1)s(x). (1)

Choose m large enough so that t(x) =
∑m+1

i=0 tix
i has degree at most m + 1 and s(x) =∑m

i=0 six
i has degree at most m. Equation (1) then gives

rt0 = −s0,

rti = dsi−1 − si, i = 1, . . . ,m,

rtm+1 = dsm.

It follows from these equations by induction that

dj+1sm−j = r

j∑
i=0

tm+1−id
i, j = 1 . . . ,m

and therefore

r
m+1∑
i=0

tm+1−id
i = 0. (2)

So, either r is a zero divisor on R, or
∑m

i=0 tm+1−id
i = 0. If the latter holds, we define

u(x) =
∑m

i=0 uix
i by u0 = −t0 and ui = dui−1 − ti, i > 0 and it follows that t(x) =

2



(dx−1)u(x) which implies that t = 0 in Q, contradiction. If φ(r) = 0 then we get equation

(1) with t(x) = 1 and we can proceed to obtain equation (2), which then reads dm+1r = 0

and completes the proof.

We will prove a couple of complements to our main result. First we need a lemma,

which states that every element of Q is a fraction.

Lemma. If R is a ring and D ⊂ R and Q is the ring of fractions of R with denominators

in D then for each q ∈ Q, there exists d ∈ D̄ (hence φ(d) is a unit in Q) and r ∈ R such

that φ(d)q = φ(r) (i.e. every element of Q is a fraction φ(r)φ(d)−1).

Proof: The element q of Q corresponds to a polynomial in S and only finitely many

variables xd1 , . . . , xdn appear in q. Multiplying q by (d1 · · · dn)N for some large N we can

replace any appearance of d1xd1 , . . . , dnxdn
by 1 and obtain an element of φ(R).

Now we prove the usual fact that integral domains have a field of fractions.

Theorem 2. If R is an integral domain and D ⊂ R \ {0} then the ring of fractions of R

with denominators in D is an integral domain and if D = R \ {0} it is a field.

Proof: If ab = 0 in Q, then by the lemma, there exists d, e ∈ D̄, r, s ∈ R with

φ(d)a = φ(r), φ(e)b = φ(s). Then φ(rs) = 0 and, since R is a domain, we get rs = 0 from

theorem 1. So r = 0 or s = 0 and since φ(d), φ(e) are units, we get a = 0 or b = 0. If

D = R \ {0} and a ∈ Q, a 6= 0, we can get by the lemma a unit u of Q with ua ∈ φ(R) and

ua 6= 0, so ua is a unit in Q and therefore so is a.

The following result summarizes the main properties of rings of fractions used in ring

theory (see [M])

Theorem 3. IfR is a ring andD ⊂ R andQ is the ring of fractions ofR with denominators

in D then all ideals of Q are of the form φ(I)Q, where I is an ideal of R and the prime

ideals of Q are of the form φ(I)Q, where I is a prime ideal of R disjoint from D.

Proof: If J is an ideal of Q, then I = φ−1(J) is an ideal of R. Given a ∈ J , there exists

d ∈ D̄, φ(d)a ∈ φ(R) by the lemma, so φ(d)a ∈ φ(I) and since φ(d) is a unit, a ∈ φ(I)Q, as
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desired. If J is prime, then J does not contain any unit of Q, thus it meets φ(D) trivially,

so I is disjoint from D. Finally, if I is a prime ideal of R disjoint from D then R/I is an

integral domain and the image of D in it does not contain zero so its ring of fractions is a

domain and it is easily seen to be Q/φ(I)Q so φ(I)Q is prime and we are done.

Also, we can easily prove that a derivation on R extends to rings of fractions.

Theorem 4. IfR is a ring andD ⊂ R andQ is the ring of fractions ofR with denominators

in D and δ is a derivation on R then δ extends to Q.

Proof: Define δ on S by δ(xd) = −x2
dδ(d), d ∈ D and notice that δ(dxd − 1) =

−dx2
dδ(d) + xdδ(d) = xdδ(d)(1− dxd) ∈ I, so δ descends to Q = S/I, as desired.
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