A note on the arithmetic of differential equations

José Felipe Voloch

In this note we give a method for computing the differential Galois group of some
linear second-order ordinary differential equations using arithmetic information, namely

the p-curvatures.
1. Introduction

Let K be a number field and consider a finite extension F//K (z), where z is an inde-
terminate, with derivation D = d/dz. To a linear differential equation Ly = Y ", ¢;D'y =
0, c; € F, one associates its differential Galois group GG, which is a linear algebraic subgroup
of GL,, defined over F and isomorphic over F to a group defined over K.

A conjecture of Katz [K3], which generalizes a conjecture of Grothendieck, predicts
that the Lie algebra of GG is the smallest F-Lie subalgebra of of the Lie algebra of GL,,
whose reduction modulo primes p contains the p-curvature of L, for all sufficiently large p.
The p-curvature of L is the n x n matrix A,(mod p) where (DPy, DPTly, ... DPT—1ly)t =
A,(y,Dy,...,D" ty)t. Katz has shown ([K3]) that the p-curvatures of L all belong to
the Lie algebra of G. We will show, in some cases where we have an a priori restriction on
G, that the fact that its Lie algebra contains the p-curvatures is enough to determine G.
This gives an affirmative answer, in these cases, to the question posed at the end of the
introduction of [K4].

From now on, assume that n = 2, that is L is a second-order linear differential
operator. We will also assume that c¢;/co is the logarithmic derivative of an element of F'.

As is well-known, this is equivalent to the Galois group G of L be a subgroup of SL,. Let
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From the fact that ¢; /cq is a logarithmic derivative, it follows that the p-curvature of

us write

the determinant of Ly = 0 is always zero, which means that the trace of the p-curvature
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of Ly = 0 is zero, that is b,41 = —a,.

For an example that will be useful in the sequel, take the equation D%y = ay, where
a has expansion az® + .-+, with & > 0 at a place P of F/K above x = 0o, so a has a
pole there. Then D"y = a,y + b,Dy, where ao = a,bo = 0 and, for n > 2, a1 =
Da,, + ab,,b,+1 = Db, + a,,. It follows by induction that the a,, b, have the following

expansion at P:

Ao = Q"2F 4 oo by = kn(n — 1)tk 4

Aon+1 = k‘nzanmkn_l + - b2n+l = angpkn + -

it follows that, for a prime p = 2n + 1,

knzanxk"_1~|—--- anxkn+... ( )
A, = . *
p Qntlgk(ntl) 4oL kn(n + 1)04":5’“"_1 4.

Another result that will be useful in the sequel is the following lemma.

Lemma. Let p be a prime sufficiently large and consider the equation Ly = 0 modulo p
and assume it has a solution y # 0 with w = Dy/y separable algebraic over Fp,(x) and that

A, has trace zero. Then u satisfies byu® + 2a,u — a1 = 0.

Proof: Since u is separable algebraic over F,(z), we have DPu = 0. Since DP is
a derivation we get DPTly = DP(uy) = uDPy. On the other hand, by definition of A,,
DPy = apy + b,Dy = y(a, + byu), D*'y = ap1y + bp1Dy = y(ap+1 + byrru). Thus,
apt+1 + bpr1u = u(ap + bpu) and using that b,11 = —a,, we get the equation stated in the

lemma.
2. Proper subgroups of SL-

The list of proper algebraic subgroups of SLs, up to conjugation, is well-known and
we will go through the list pointing out facts relevant to our purposes. Our arguments in

this section are based on the work of van der Put [P].
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2.1 G finite

In this case all the solutions to the equation Ly = 0 are algebraic. This leads to
infinitely many Dy/y which are also algebraic and the equation of the lemma therefore

has infinitely many solutions, which proves that the p-curvature is zero.
22 G= Gy

In this case G is conjugate to the group of diagonal matrices with determinant 1.
The action of G on the space of solutions of Ly = 0 has two invariant lines, generated
by y1,¥y2, say. Since the lines are invariant, the logarithmic derivatives u; = Dy;/y; are
invariant under GG, which means that the u; are in F' but are not logarithmic derivatives,
for otherwise we would be in the case G finite.

We then obtain from the Lemma the following two relations among the entries of the
p-curvature byu? + 2a,u; — apr1 = 0,7 = 1,2. Recall that we also have b, = —a,, since

the p-curvature has trace zero. These relations are easily seen to be independent.
2.3 GG extension of Z/2 by G,

In this case G is conjugate to the group of diagonal and antidiagonal matrices with
determinant 1. This case is similar to the previous case, except that now the u; are in a
quadratic extension F/F and are conjugate over F', since the Z/2 must permute the lines

invariant under the subgroup of G isomorphic to G,,.
2.4 G extension of G,, by G,

In this case G is conjugate to the group of triangular matrices with determinant 1.
In this case there is an unique invariant line under G in the solution space of Ly = 0,
generated by y;, say. As before, the logarithmic derivative u; = Dy, /y; is in F' and we

get, a relation bpu% + 2a,u; — apy1 = 0 as well as by = —ay.
2.5 G=G,

In this case G is conjugate to the group of triangular matrices with both diagonal

entries equal to 1. In this case G acts trivially on the invariant line so there is a solution
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of Ly = 0, say y1, in F. As before, uy = Dy;/y; is also in F and this gives a relation
bpu% + 2apu; — ap+1 = 0. But we do not get all relations among the entries of A, this
way. In order to get all relations we use that y; is in F to get DPy; = DPtly; = 0. This
gives two relations apy1 + bpDy1 = ap+1y1 + bpr1 Dy = 0 and, again as before, we have
bpr1 = —ayp.

As an application of the above, we expand an argument of van der Put [P] for the

Airy equation (and correct a small error there) in order to reprove a theorem of Katz.

Theorem 1. The equation D?*y = ay, where a is a polynomial of odd degree, has Galois

group SLs.

Proof: Suppose G is not SLy. Notice that, from (*) above, we get in particular that
the p-curvature is not zero so G is not finite. In all other cases, Ly = 0 has a solution for
which u = Dy/y is algebraic. So from the lemma we get the relation b,u*+2a,u—a,+1 = 0,
which is a quadratic equation for u. Again from (*), we get the top terms of the a,, by, ap+1
and this gives that the discriminant of the quadratic for u, 4(a§+bpap+1) is a polynomial of
degree kp, which is odd for p odd. Therefore the quadratic equation cannot have a rational
function as root, since the discriminant is not a square. So the Galois group can only be
conjugate to (2.4). To rule out (2.4), we proceed as in [P]. From [P] 4.1 (our b, is f there),
b, satisfies a third order equation with polynomial coefficients D3b, — 4aDb,, — 2Dab,, = 0.
If the Galois group is assumed to be (2.4), u satisfies a quadratic equation over K (x) and
since it also satisfies byu® +2a,u—a,1 = 0, we get that 2a,/b, = —Db, /b, is independent
of p. However, b, has degree (p — 1)/2 (from (*))and, because of the differential equation
it satisfies, b, cannot have any triple zeros ([P] erroneously asserts the zeros are simple but
gives counterexamples a paragraph earlier!). Thus —Db, /b, has at least [(p — 1)/4] poles

and thus cannot be independent of p. This contradiction completes the proof.
3. Globally nilpotent equations

As before we consider a second-order equation Ly = 0 with Galois group G contained

in SLy. We will assume that Ly = 0 is globally nilpotent, that is, its p-curvatures are
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nilpotent for all sufficiently large p. Katz [K3] has shown that factors of the Gauss-Manin
connection on the cohomology of families of algebraic varieties are globally nilpotent. In
particular, the Gauss hypergeometric equation z(z —1)D?y+ ((a+b+1)z—c)Dy+aby = 0
is globally nilpotent, a result which is also proved directly in [M]. Dwork [D] conjectured
that the only second-order equations over K (z) which are globally nilpotent are obtained

from Gauss hypergeometric equation by a change of variable or have a rational solution.

In this section we will compute the Galois group of some second order globally nilpo-
tent equations using the p-curvatures. We note that, for the Gauss hypergeometric equa-
tion, our result follows from [BH]. Katz [K3] has shown that globally nilpotent equations
have regular singular points and rational exponents. The p-curvature of the determinant
of Ly = 0 is the trace of the p-curvature of Ly = 0 which is zero, by nilpotence. So the
determinant of of Ly = 0 has all its p-curvatures equal to zero, hence finite Galois group
if the one-dimensional case of the Grothendieck conjecture holds. Thus, passing to a finite

extension of F' we may assume that G is a subgroup of SLs.

As shown by Honda [H], the nilpotence of A, implies that Ly = 0 has a non-zero
solution y; in the reduction of F modulo p. Then, as before, u; = Dy, /y; satisfies the
quadratic equation bpu2 +2a,u—ap+1 =0, as does any other algebraic Dy/y with Ly = 0,
by the Lemma. However, the discriminant of the quadratic equation is 4(%27 + bpapt1) =
—4det A, = 0, by the nilpotence of A,. So this quadratic equation has only one solution
if it is not identically zero, i.e. if A, # 0. Hence the only possibilities, if A, # 0, for the
Galois group are SLo,(2.4) and (2.5). In both cases (2.4) and (2.5), there a unique u € F,

of the form Dy/y, Ly = 0. and so, from the above u; = w.

Suppose that Ly = 0 has m singularities and denote by p!, p7,..., o, pl, their re-
spective exponents. We say that Ly = 0 satisfies the exponent restriction if for all choices
of p; from pl,p/,i = 1,...,m, we have that ) p; is not a nonpositive integer. Suppose
that Ly = 0 satisfies this exponent restriction. Now, the valuation of y; is congruent
modulo p to 0 or 1 at the regular points. Let k be the number of regular points where

the valuation of y; is congruent to 1 modulo p. The valuation of y; is congruent modulo p
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to either p) or p!’ at the i-th singular point and therefore, by the residue theorem applied
to dy1/y1, > pi + k is divisible by p. If u;dx = dy;/y1 has a bounded number of poles,
then k is bounded and therefore ) p; is congruent modulo p to a bounded nonpositive
integer (viz. —k) for the choice of p; corresponding to the valuations of y;. From the
exponent restriction and the fact that the p;’s are rational numbers, it follows that this
cannot happen for infinitely many primes. Therefore u; cannot have a bounded number
of poles and therefore cannot be congruent to some u € K(x) independently of p. From
the above discussion this implies that the Galois group is SL,. This argument proves the

following theorem.

Theorem 2. Let Ly = 0 be a globally nilpotent, second order differential equation whose
p-curvatures do not vanish for all sufficiently large p and which satisfies the above exponent

restriction. Then the differential Galois group of Ly = 0 is S L.
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