Daniel Allcock, 5 February 1997, allcock@math.utah.edu
http://www.math.utah.edu/~allcock

The Finite Reflection Groups

We classify the finite reflection groups. Our treatment has several advantages over some other treatments - in particular, we avoid computing determinants and the use of the Perron-Frobenius Theorem. The ideas here can be found spread across several sections of Coxeter's Regular Polytopes. The only thing missing from our treatment is a construction of the finite groups.

By the norm v^{2} of a vector v, we mean $v^{2}=v \cdot v$; some people call this the squared norm of v.

1 Preliminaries

A reflection is an isometry of Euclidean space V that leaves a hyperplane (its mirror) fixed pointwise and exchanges the two components of its complement. A reflection group is a group generated by reflections. Suppose W is a finite reflection group. W stabilizes some point of Euclidean space (say, the centroid of the orbit of any point), which we will take to be the origin. W contains only finitely many reflections, and the complement in V of the union of the mirrors falls into finitely many components. We call the closure of any one of these components a Weyl chamber (or just a chamber). A mirror M is said to bound a chamber C if $C \cap M$ has the same dimension as M. The walls of C are the mirrors that bound C. A root of W is a vector r of norm 2 that is orthogonal to some mirror M of W; we sometimes refer to the reflection across M as the reflection in r. We fix one chamber and call it D. For each wall M of D we choose the root associated to M which has positive inner product with each element of the interior of D. We denote these vectors by r_{1}, \ldots, r_{n} and call them the simple roots of W. We write R_{i} for the reflection in r_{i}, which negates r_{i} and fixes r_{i}^{\perp} pointwise.
Lemma 1.1. The R_{i} generate W, which acts transitively on its Weyl chambers.
Proof: We say that 2 chambers C_{1}, C_{2} are neighbors if they are both bounded by the same mirror M and $C_{1} \cap M=C_{2} \cap M$; in this case C_{1} and C_{2} are exchanged by the reflection across M. It is easy to see that any two chambers are equivalent under the equivalence relation generated by the relation of neighborliness. (Proof: choose points in the interiors of the 2 chambers in sufficiently general position that the segment joining them never meets an intersection of 2 mirrors. The sequence of chambers that this segment passes through provides a sequence of neighbors.)

If a subgroup G of W contains the reflections in the walls of a chamber C_{1}, and C_{2} is a neighbor of C_{1}, then G also contains the reflections in the walls of C_{2}. Here's why: letting R be the reflection across the common wall of C_{1} and C_{2}, we have $R \in G$ and we observe that the reflections in the walls of C_{2} are the conjugates by R of those in the walls of C_{1}.

Letting G be the group generated by R_{1}, \ldots, R_{n}, we see that G contains the reflections in the walls of the neighbors of D, and of their neighbors, and so on. That is, G contains all the reflections of W, so equals W. Since any two neighboring chambers are equivalent under W, we also see that W acts transitively on chambers.

Consider the subgroup H of W generated by the reflections in a pair of distinct simple roots r_{i} and r_{j}. In this paragraph we will restrict our attention to the span of r_{i} and r_{j}, since H acts trivially on $r_{i}^{\perp} \cap r_{j}^{\perp}$. Consider the chambers of H; these are even in number since each reflection of H permutes them freely. Furthermore, lemma 1.1 shows that they are all equivalent under H. Letting $2 n_{i j}$ be the number of Weyl chambers, we deduce that the 2 mirrors bounding any chamber
meet at an angle of $\pi / n_{i j}$. Because no mirror of H can cut the Weyl chamber D of W, the mirrors of R_{i} and R_{j} must bound the same chamber of H, so their interior angle is $\pi / n_{i j}$. Picture-drawing in the plane allows us to determine the angle between r_{i} and r_{j}, and we find

$$
\begin{equation*}
r_{i} \cdot r_{j}=-2 \cos \left(\pi / n_{i j}\right) \tag{1.1}
\end{equation*}
$$

We have already made the choice $r_{i} \cdot r_{i}=2$, so we set $n_{i i}=1$ to be consistent with (1.1). Note that the integers $n_{i j}$ determine W : the mutual inner products of any set of vectors in Euclidean space determines them (up to isometry), so the $n_{i j}$ determine the r_{i}, which determine the R_{i}, which by lemma 1.1 determine W.

A Coxeter diagram (sometimes just called a diagram) is a simplicial graph with each edge labeled by an integer >2. The Coxeter diagram Δ_{W} of W is the diagram whose vertices are the r_{i}, with r_{i} and r_{j} joined by an edge marked with the integer $n_{i j}$ when $n_{i j}>2$. This definition depends on our choice D of Weyl chamber, but the transitivity of W on its chambers shows that a different choice of chamber leads to essentially the same diagram. We may recover the $n_{i j}$ from Δ_{W}, so Δ_{W} determines W. For simplicity, when drawing a Coxeter diagram one omits the numeral 3 from edges that would be so marked.

2 Controlling Δ.

Lemma 2.1. Suppose $v \in V$ with $v=\sum_{i=1}^{n} v_{i} r_{i}$. If $v_{i} \geq 0$ and are not all 0 , then $v^{2}>0$.
Proof: Since each r_{i} has positive inner product with each element of the interior of C, so does v. Thus $v \neq 0$ and so $v^{2}>0$.

A subdiagram of a Coxeter diagram Δ is a diagram whose vertex set is a subset of that of Δ, whose edge set consists of all edges of Δ joining pairs of these vertices, and whose edges are marked by the same numbers as in Δ. If Δ and Δ^{\prime} are Coxeter diagrams with the same vertex set and with edge markings $m_{i j}$ and $n_{i j}$, respectively, then we say that Δ^{\prime} is an increasement of Δ if $n_{i j} \geq m_{i j}$ for all i and j. In terms of the diagrams, Δ^{\prime} is a (strict) increasement of Δ if Δ^{\prime} can be obtained from Δ by increasing edge labels or adding edges.
Lemma 2.2. No diagram appearing in table 1 or table 2, nor any increasement of one, may appear as a subdiagram of Δ_{W}.

Proof: Let Δ be a diagram from one of the tables, and Δ^{\prime} an increasement of Δ that is a subdiagram of Δ_{W}. Identifying the vertices of Δ and Δ^{\prime} with (some of) the simple roots r_{i}, we may construct the vector $v=\sum_{i} v_{i} r_{i}$, where v_{i} is the (positive) number adjacent to the vertex r_{i} on the table. One may compute the norm of v from knowledge of the edge labels $n_{i j}$ of $\Delta^{\prime} \subseteq \Delta_{W}$. If the edge labels of Δ are $m_{i j}$ then

$$
\begin{equation*}
v^{2}=\sum_{i j}-2 v_{i} v_{j} \cos \left(\pi / n_{i j}\right) \leq \sum_{i j}-2 v_{i} v_{j} \cos \left(\pi / m_{i j}\right) \tag{2.1}
\end{equation*}
$$

the last inequality holding because Δ^{\prime} is an increasement of Δ. In each case, computation reveals that the right hand side of (2.1) is at most 0 , contradicting lemma 2.1. For reference, $-2 \cos (\pi / n)$ equals $0,-1,-\sqrt{2},-\phi$ and $-\sqrt{3}$, for $n=2,3,4,5$ and 6 , respectively, and $\phi=(1+\sqrt{5}) / 2=$ $1.618 \ldots$ is the golden mean.

The compuations are not even very tedious. For $\Delta=H_{3}$ or H_{4} they are simplified by using the fact $\phi^{2}=\phi+1$. In all other cases (i.e., with Δ from table 1), the right hand side of (2.1) vanishes; to prove this one may compute inner products with the $n_{i j}$ replaced by the $m_{i j}$ and show that v is orthogonal to each r_{i}. Almost all cases are resolved by the following observation: if all the edges of Δ incident to r_{i} are marked 3 then $v \cdot r_{i}=0$ just if twice the r_{i} label equals the sum of the labels of its neighbors.

Table 1. A list of "affine" Coxeter diagrams. The numbers next to the vertices are used in the proof of lemma 2.2. A diagram X_{n} has $n+1$ vertices.

Table 2. Two examples of "hyperbolic" Coxeter diagrams. The numbers next to the vertices are used in the proof of lemma $2.2 ; \phi=(1+\sqrt{5}) / 2$ is the golden mean.

Table 3. A complete list of possible connected components of Coxeter diagrams of finite reflection groups. (See theorem 3.1.) A diagram x_{n} has n vertices.

3 The Classification

In light of the fact that Δ_{W} determines W, the following theorem classifies the finite reflection groups.

Theorem 3.1. If W is a finite reflection group, then Δ_{W} is a disjoint union of copies of the Coxeter diagrams appearing in table 3.

Proof: (This is the usual combinatorial argument.) Let Δ be a connected component of Δ_{W}. Δ can contain no cycles, else the subdiagram spanned by the vertices of a shortest cycle would be an increasement of A_{n} for some n. We will express this sort of reasoning by statements like "By A_{n}, Δ contains no cycles."

Suppose that an edge of Δ has marking $p \geq 4$. By B_{n}, Δ contains just one edge so marked. By $B D_{n}, \Delta$ has no branch points, so Δ is a simple chain of edges. By G_{2}, if $p>5$ then the edge is the whole of Δ, so Δ is $i_{2}(p)$. If $p=5$ then by H_{3} the edge must be at an end of Δ, and then by H_{4}, Δ must have fewer than 4 edges. We deduce that if $p=5$ then Δ is $i_{2}(5), h_{3}$ or h_{4}. If $p=4$ and the edge is not at an end of Δ then by F_{4} we have $\Delta=f_{4}$. If $p=4$ and the edge is at an end of Δ then $\Delta=b_{n}$ for some n.

It remains to consider the case in which all edge labels are 3 . If Δ has no branch points then $\Delta=a_{n}$ for some n. By D_{4}, each branch point of Δ has valence 3 , and by $D_{n}($ for $n>4), \Delta$ has at most one branch point. Therefore it suffices to consider Δ with exactly one branch point, of valence 3. By a 'leg' of Δ we mean one of the 3 subgraphs of Δ consisting of the edges of the path in Δ joining the branch point to one of the 3 endpoints of Δ; the length of the leg is the number of these edges. Let $\ell_{1}, \ell_{2}, \ell_{3}$ be the lengths of the legs, with $\ell_{1} \leq \ell_{2} \leq \ell_{3}$. By $E_{6}, \ell_{1}=1$. If we also have $\ell_{2}=1$ then $\Delta=d_{n}$ for some n. If $\ell_{2}>1$ then by E_{7} we have $\ell_{2}=2$ and then by E_{8} we have $\ell_{3}<5$, so Δ is one of e_{6}, e_{7} and e_{8}.

