The Finite Reflection Groups

We classify the finite reflection groups. Our treatment has several advantages over some other treatments—in particular, we avoid computing determinants and the use of the Perron-Frobenius Theorem. The ideas here can be found spread across several sections of Coxeter's *Regular Polytopes*. The only thing missing from our treatment is a construction of the finite groups.

By the norm v^2 of a vector v, we mean $v^2 = v \cdot v$; some people call this the squared norm of v.

1 Preliminaries

A reflection is an isometry of Euclidean space V that leaves a hyperplane (its mirror) fixed pointwise and exchanges the two components of its complement. A reflection group is a group generated by reflections. Suppose W is a finite reflection group. W stabilizes some point of Euclidean space (say, the centroid of the orbit of any point), which we will take to be the origin. W contains only finitely many reflections, and the complement in V of the union of the mirrors falls into finitely many components. We call the closure of any one of these components a Weyl chamber (or just a chamber). A mirror M is said to bound a chamber C if $C \cap M$ has the same dimension as M. The walls of C are the mirrors that bound C. A root of W is a vector r of norm 2 that is orthogonal to some mirror M of W; we sometimes refer to the reflection across M as the reflection in r. We fix one chamber and call it D. For each wall M of D we choose the root associated to M which has positive inner product with each element of the interior of D. We denote these vectors by r_1, \ldots, r_n and call them the simple roots of W. We write R_i for the reflection in r_i , which negates r_i and fixes r_i^{\perp} pointwise.

Lemma 1.1. The R_i generate W, which acts transitively on its Weyl chambers.

Proof: We say that 2 chambers C_1 , C_2 are neighbors if they are both bounded by the same mirror M and $C_1 \cap M = C_2 \cap M$; in this case C_1 and C_2 are exchanged by the reflection across M. It is easy to see that any two chambers are equivalent under the equivalence relation generated by the relation of neighborliness. (Proof: choose points in the interiors of the 2 chambers in sufficiently general position that the segment joining them never meets an intersection of 2 mirrors. The sequence of chambers that this segment passes through provides a sequence of neighbors.)

If a subgroup G of W contains the reflections in the walls of a chamber C_1 , and C_2 is a neighbor of C_1 , then G also contains the reflections in the walls of C_2 . Here's why: letting R be the reflection across the common wall of C_1 and C_2 , we have $R \in G$ and we observe that the reflections in the walls of C_2 are the conjugates by R of those in the walls of C_1 .

Letting G be the group generated by R_1, \ldots, R_n , we see that G contains the reflections in the walls of the neighbors of D, and of their neighbors, and so on. That is, G contains all the reflections of W, so equals W. Since any two neighboring chambers are equivalent under W, we also see that W acts transitively on chambers.

Consider the subgroup H of W generated by the reflections in a pair of distinct simple roots r_i and r_j . In this paragraph we will restrict our attention to the span of r_i and r_j , since H acts trivially on $r_i^{\perp} \cap r_j^{\perp}$. Consider the chambers of H; these are even in number since each reflection of H permutes them freely. Furthermore, lemma 1.1 shows that they are all equivalent under H. Letting $2n_{ij}$ be the number of Weyl chambers, we deduce that the 2 mirrors bounding any chamber

meet at an angle of π/n_{ij} . Because no mirror of H can cut the Weyl chamber D of W, the mirrors of R_i and R_j must bound the same chamber of H, so their interior angle is π/n_{ij} . Picture-drawing in the plane allows us to determine the angle between r_i and r_j , and we find

$$r_i \cdot r_j = -2\cos(\pi/n_{ij}). \tag{1.1}$$

We have already made the choice $r_i \cdot r_i = 2$, so we set $n_{ii} = 1$ to be consistent with (1.1). Note that the integers n_{ij} determine W: the mutual inner products of any set of vectors in Euclidean space determines them (up to isometry), so the n_{ij} determine the r_i , which determine the R_i , which by lemma 1.1 determine W.

A Coxeter diagram (sometimes just called a diagram) is a simplicial graph with each edge labeled by an integer > 2. The Coxeter diagram Δ_W of W is the diagram whose vertices are the r_i , with r_i and r_j joined by an edge marked with the integer n_{ij} when $n_{ij} > 2$. This definition depends on our choice D of Weyl chamber, but the transitivity of W on its chambers shows that a different choice of chamber leads to essentially the same diagram. We may recover the n_{ij} from Δ_W , so Δ_W determines W. For simplicity, when drawing a Coxeter diagram one omits the numeral 3 from edges that would be so marked.

2 Controlling Δ .

Lemma 2.1. Suppose $v \in V$ with $v = \sum_{i=1}^{n} v_i r_i$. If $v_i \ge 0$ and are not all 0, then $v^2 > 0$.

Proof: Since each r_i has positive inner product with each element of the interior of C, so does v. Thus $v \neq 0$ and so $v^2 > 0$.

A subdiagram of a Coxeter diagram Δ is a diagram whose vertex set is a subset of that of Δ , whose edge set consists of all edges of Δ joining pairs of these vertices, and whose edges are marked by the same numbers as in Δ . If Δ and Δ' are Coxeter diagrams with the same vertex set and with edge markings m_{ij} and n_{ij} , respectively, then we say that Δ' is an increasement of Δ if $n_{ij} \geq m_{ij}$ for all *i* and *j*. In terms of the diagrams, Δ' is a (strict) increasement of Δ if Δ' can be obtained from Δ by increasing edge labels or adding edges.

Lemma 2.2. No diagram appearing in table 1 or table 2, nor any increasement of one, may appear as a subdiagram of Δ_W .

Proof: Let Δ be a diagram from one of the tables, and Δ' an increasement of Δ that is a subdiagram of Δ_W . Identifying the vertices of Δ and Δ' with (some of) the simple roots r_i , we may construct the vector $v = \sum_i v_i r_i$, where v_i is the (positive) number adjacent to the vertex r_i on the table. One may compute the norm of v from knowledge of the edge labels n_{ij} of $\Delta' \subseteq \Delta_W$. If the edge labels of Δ are m_{ij} then

$$v^{2} = \sum_{ij} -2v_{i}v_{j}\cos(\pi/n_{ij}) \le \sum_{ij} -2v_{i}v_{j}\cos(\pi/m_{ij}),$$
(2.1)

the last inequality holding because Δ' is an increasement of Δ . In each case, computation reveals that the right hand side of (2.1) is at most 0, contradicting lemma 2.1. For reference, $-2\cos(\pi/n)$ equals 0, -1, $-\sqrt{2}$, $-\phi$ and $-\sqrt{3}$, for n = 2, 3, 4, 5 and 6, respectively, and $\phi = (1 + \sqrt{5})/2 = 1.618...$ is the golden mean.

The computations are not even very tedious. For $\Delta = H_3$ or H_4 they are simplified by using the fact $\phi^2 = \phi + 1$. In all other cases (i.e., with Δ from table 1), the right hand side of (2.1) vanishes; to prove this one may compute inner products with the n_{ij} replaced by the m_{ij} and show that v is orthogonal to each r_i . Almost all cases are resolved by the following observation: if all the edges of Δ incident to r_i are marked 3 then $v \cdot r_i = 0$ just if twice the r_i label equals the sum of the labels of its neighbors.

Table 1. A list of "affine" Coxeter diagrams. The numbers next to the vertices are used in the proof of lemma 2.2. A diagram X_n has n + 1 vertices.

Table 2. Two examples of "hyperbolic" Coxeter diagrams. The numbers next to the vertices are used in the proof of lemma 2.2; $\phi = (1 + \sqrt{5})/2$ is the golden mean.

Table 3. A complete list of possible connected components of Coxeter diagrams of finite reflection groups. (See theorem 3.1.) A diagram x_n has n vertices.

3 The Classification

In light of the fact that Δ_W determines W, the following theorem classifies the finite reflection groups.

Theorem 3.1. If W is a finite reflection group, then Δ_W is a disjoint union of copies of the Coxeter diagrams appearing in table 3.

Proof: (This is the usual combinatorial argument.) Let Δ be a connected component of Δ_W . Δ can contain no cycles, else the subdiagram spanned by the vertices of a shortest cycle would be an increasement of A_n for some n. We will express this sort of reasoning by statements like "By A_n , Δ contains no cycles."

Suppose that an edge of Δ has marking $p \geq 4$. By B_n , Δ contains just one edge so marked. By BD_n , Δ has no branch points, so Δ is a simple chain of edges. By G_2 , if p > 5 then the edge is the whole of Δ , so Δ is $i_2(p)$. If p = 5 then by H_3 the edge must be at an end of Δ , and then by H_4 , Δ must have fewer than 4 edges. We deduce that if p = 5 then Δ is $i_2(5)$, h_3 or h_4 . If p = 4and the edge is not at an end of Δ then by F_4 we have $\Delta = f_4$. If p = 4 and the edge is at an end of Δ then $\Delta = b_n$ for some n.

It remains to consider the case in which all edge labels are 3. If Δ has no branch points then $\Delta = a_n$ for some n. By D_4 , each branch point of Δ has valence 3, and by D_n (for n > 4), Δ has at most one branch point. Therefore it suffices to consider Δ with exactly one branch point, of valence 3. By a 'leg' of Δ we mean one of the 3 subgraphs of Δ consisting of the edges of the path in Δ joining the branch point to one of the 3 endpoints of Δ ; the length of the leg is the number of these edges. Let ℓ_1 , ℓ_2 , ℓ_3 be the lengths of the legs, with $\ell_1 \leq \ell_2 \leq \ell_3$. By E_6 , $\ell_1 = 1$. If we also have $\ell_2 = 1$ then $\Delta = d_n$ for some n. If $\ell_2 > 1$ then by E_7 we have $\ell_2 = 2$ and then by E_8 we have $\ell_3 < 5$, so Δ is one of e_6 , e_7 and e_8 .