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The Finite Reflection Groups

We classify the finite reflection groups. Our treatment has several advantages over some other
treatments—in particular, we avoid computing determinants and the use of the Perron-Frobenius
Theorem. The ideas here can be found spread across several sections of Coxeter’s Regular Polytopes.
The only thing missing from our treatment is a construction of the finite groups.

By the norm v2 of a vector v, we mean v2 = v · v; some people call this the squared norm of v.

1 Preliminaries

A reflection is an isometry of Euclidean space V that leaves a hyperplane (its mirror) fixed pointwise
and exchanges the two components of its complement. A reflection group is a group generated by
reflections. Suppose W is a finite reflection group. W stabilizes some point of Euclidean space
(say, the centroid of the orbit of any point), which we will take to be the origin. W contains only
finitely many reflections, and the complement in V of the union of the mirrors falls into finitely
many components. We call the closure of any one of these components a Weyl chamber (or just a
chamber). A mirror M is said to bound a chamber C if C ∩M has the same dimension as M . The
walls of C are the mirrors that bound C. A root of W is a vector r of norm 2 that is orthogonal
to some mirror M of W ; we sometimes refer to the reflection across M as the reflection in r. We
fix one chamber and call it D. For each wall M of D we choose the root associated to M which
has positive inner product with each element of the interior of D. We denote these vectors by
r1, . . . , rn and call them the simple roots of W . We write Ri for the reflection in ri, which negates
ri and fixes r⊥i pointwise.

Lemma 1.1. The Ri generate W , which acts transitively on its Weyl chambers.

Proof: We say that 2 chambers C1, C2 are neighbors if they are both bounded by the same
mirror M and C1∩M = C2∩M ; in this case C1 and C2 are exchanged by the reflection across M . It
is easy to see that any two chambers are equivalent under the equivalence relation generated by the
relation of neighborliness. (Proof: choose points in the interiors of the 2 chambers in sufficiently
general position that the segment joining them never meets an intersection of 2 mirrors. The
sequence of chambers that this segment passes through provides a sequence of neighbors.)

If a subgroup G of W contains the reflections in the walls of a chamber C1, and C2 is a
neighbor of C1, then G also contains the reflections in the walls of C2. Here’s why: letting R
be the reflection across the common wall of C1 and C2, we have R ∈ G and we observe that the
reflections in the walls of C2 are the conjugates by R of those in the walls of C1.

Letting G be the group generated by R1, . . . , Rn, we see that G contains the reflections in
the walls of the neighbors of D, and of their neighbors, and so on. That is, G contains all the
reflections of W , so equals W . Since any two neighboring chambers are equivalent under W , we
also see that W acts transitively on chambers.

Consider the subgroup H of W generated by the reflections in a pair of distinct simple roots
ri and rj . In this paragraph we will restrict our attention to the span of ri and rj , since H acts
trivially on r⊥i ∩ r⊥j . Consider the chambers of H; these are even in number since each reflection
of H permutes them freely. Furthermore, lemma 1.1 shows that they are all equivalent under H.
Letting 2nij be the number of Weyl chambers, we deduce that the 2 mirrors bounding any chamber
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meet at an angle of π/nij . Because no mirror of H can cut the Weyl chamber D of W , the mirrors
of Ri and Rj must bound the same chamber of H, so their interior angle is π/nij . Picture-drawing
in the plane allows us to determine the angle between ri and rj , and we find

ri · rj = −2 cos(π/nij). (1.1)

We have already made the choice ri ·ri = 2, so we set nii = 1 to be consistent with (1.1). Note that
the integers nij determine W : the mutual inner products of any set of vectors in Euclidean space
determines them (up to isometry), so the nij determine the ri, which determine the Ri, which by
lemma 1.1 determine W .

A Coxeter diagram (sometimes just called a diagram) is a simplicial graph with each edge
labeled by an integer > 2. The Coxeter diagram ∆W of W is the diagram whose vertices are the
ri, with ri and rj joined by an edge marked with the integer nij when nij > 2. This definition
depends on our choice D of Weyl chamber, but the transitivity of W on its chambers shows that
a different choice of chamber leads to essentially the same diagram. We may recover the nij from
∆W , so ∆W determines W. For simplicity, when drawing a Coxeter diagram one omits the numeral
3 from edges that would be so marked.

2 Controlling ∆.

Lemma 2.1. Suppose v ∈ V with v =
∑n

i=1
viri. If vi ≥ 0 and are not all 0, then v2 > 0.

Proof: Since each ri has positive inner product with each element of the interior of C, so does
v. Thus v 6= 0 and so v2 > 0.

A subdiagram of a Coxeter diagram ∆ is a diagram whose vertex set is a subset of that of
∆, whose edge set consists of all edges of ∆ joining pairs of these vertices, and whose edges are
marked by the same numbers as in ∆. If ∆ and ∆′ are Coxeter diagrams with the same vertex set
and with edge markings mij and nij , respectively, then we say that ∆′ is an increasement of ∆ if
nij ≥ mij for all i and j. In terms of the diagrams, ∆′ is a (strict) increasement of ∆ if ∆′ can be
obtained from ∆ by increasing edge labels or adding edges.

Lemma 2.2. No diagram appearing in table 1 or table 2, nor any increasement of one, may appear

as a subdiagram of ∆W .

Proof: Let ∆ be a diagram from one of the tables, and ∆′ an increasement of ∆ that is a
subdiagram of ∆W . Identifying the vertices of ∆ and ∆′ with (some of) the simple roots ri, we
may construct the vector v =

∑
i viri, where vi is the (positive) number adjacent to the vertex ri

on the table. One may compute the norm of v from knowledge of the edge labels nij of ∆′ ⊆ ∆W .
If the edge labels of ∆ are mij then

v2 =
∑

ij

−2vivj cos(π/nij) ≤
∑

ij

−2vivj cos(π/mij), (2.1)

the last inequality holding because ∆′ is an increasement of ∆. In each case, computation reveals
that the right hand side of (2.1) is at most 0, contradicting lemma 2.1. For reference, −2 cos(π/n)
equals 0, −1, −

√
2, −φ and −

√
3, for n = 2, 3, 4, 5 and 6, respectively, and φ = (1 +

√
5)/2 =

1.618 . . . is the golden mean.
The compuations are not even very tedious. For ∆ = H3 or H4 they are simplified by using

the fact φ2 = φ + 1. In all other cases (i.e., with ∆ from table 1), the right hand side of (2.1)
vanishes; to prove this one may compute inner products with the nij replaced by the mij and show
that v is orthogonal to each ri. Almost all cases are resolved by the following observation: if all
the edges of ∆ incident to ri are marked 3 then v · ri = 0 just if twice the ri label equals the sum
of the labels of its neighbors.
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An

• • ••

•

1 1 1 1

1

Bn • • • •••4 4
√

2 2 2 2 2
√

2

BDn • • • ••

•

•

4
√

2 2 2 2

1

1

Dn • • ••

•

•

•

•

1

1

2 2 2

1

1

E6

• • • • •

•

•

1 2 3 2 1

2

1

E7

• • • • • • •

•

1 2 3 4 3 2 1

2

E8

• • • • • • • •

•

2 4 6 5 4 3 2 1

3

F4 • • • • •4
√

2
√

8 3 2 1

G2 • • •6
√

3 2 1

Table 1. A list of “affine” Coxeter diagrams. The numbers next to the vertices are used
in the proof of lemma 2.2. A diagram Xn has n + 1 vertices.
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H3 • • • •5

1 φ φ 1

H4 • • • • •5

2φ 4 3 2 1

Table 2. Two examples of “hyperbolic” Coxeter diagrams. The numbers next to the
vertices are used in the proof of lemma 2.2; φ = (1 +

√
5)/2 is the golden mean.

an • • • ••

bn • • • ••4

dn • • ••

•

•

e6

• • • • •

•

e7

• • • • • •

•

e8

• • • • • • •

•

f4 • • • •4

g2 • •6

h3 • • •5

h4 • • • •5

i2(p) • •p

Table 3. A complete list of possible connected components of Coxeter diagrams
of finite reflection groups. (See theorem 3.1.) A diagram xn has n vertices.
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3 The Classification

In light of the fact that ∆W determines W , the following theorem classifies the finite reflection
groups.

Theorem 3.1. If W is a finite reflection group, then ∆W is a disjoint union of copies of the

Coxeter diagrams appearing in table 3.

Proof: (This is the usual combinatorial argument.) Let ∆ be a connected component of ∆W .
∆ can contain no cycles, else the subdiagram spanned by the vertices of a shortest cycle would be
an increasement of An for some n. We will express this sort of reasoning by statements like “By
An, ∆ contains no cycles.”

Suppose that an edge of ∆ has marking p ≥ 4. By Bn, ∆ contains just one edge so marked.
By BDn, ∆ has no branch points, so ∆ is a simple chain of edges. By G2, if p > 5 then the edge is
the whole of ∆, so ∆ is i2(p). If p = 5 then by H3 the edge must be at an end of ∆, and then by
H4, ∆ must have fewer than 4 edges. We deduce that if p = 5 then ∆ is i2(5), h3 or h4. If p = 4
and the edge is not at an end of ∆ then by F4 we have ∆ = f4. If p = 4 and the edge is at an end
of ∆ then ∆ = bn for some n.

It remains to consider the case in which all edge labels are 3. If ∆ has no branch points then
∆ = an for some n. By D4, each branch point of ∆ has valence 3, and by Dn (for n > 4), ∆ has
at most one branch point. Therefore it suffices to consider ∆ with exactly one branch point, of
valence 3. By a ‘leg’ of ∆ we mean one of the 3 subgraphs of ∆ consisting of the edges of the path
in ∆ joining the branch point to one of the 3 endpoints of ∆; the length of the leg is the number
of these edges. Let `1, `2, `3 be the lengths of the legs, with `1 ≤ `2 ≤ `3. By E6, `1 = 1. If we
also have `2 = 1 then ∆ = dn for some n. If `2 > 1 then by E7 we have `2 = 2 and then by E8 we
have `3 < 5, so ∆ is one of e6, e7 and e8.
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