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Abstract. The moduli space of real 6-tuples in CP
1 is modeled on a quotient

of hyperbolic 3-space by a nonarithmetic lattice in Isom H
3. This is partly

an expository note; the first part of it is an introduction to orbifolds and
hyperbolic reflection groups.

These notes are an exposition of the key ideas behind our result that the
moduli space Ms of stable real binary sextics is the quotient of real hyperbolic
3-space H3 by a certain Coxeter group (together with its diagram automorphism).
We hope they can serve as an aid in understanding our work [3] on moduli of real
cubic surfaces, since exactly the same ideas are used, but the computations are
easier and the results can be visualized.

These notes derive from the first author’s lectures at the summer school
“Algebra and Geometry around Hypergeometric Functions”, held at Galatasary
University in Istanbul in July 2005. He is grateful to the organizers, fellow speakers
and students for making the workshop very rewarding. To keep the flavor of lec-
ture notes, not much has been added beyond the original content of the lectures;
some additional material appears in an appendix. The pictures are hand-drawn to
encourage readers to draw their own.

Lecture 1

Hyperbolic space H3 is a Riemannian manifold for which one can write down an
explicit metric, but for us the following model will be more useful; it is called
the upper half-space model. Its underlying set is the set of points in R3 with
positive vertical coordinate, and geodesics appear either as vertical half-lines, or

First author partly supported by NSF grant DMS 0231585. Second and third authors partly

supported by NSF grants DMS 9900543 and DMS 0200877.



2 Daniel Allcock, James A. Carlson and Domingo Toledo

as semicircles with both ends resting on the bounding R2:

Note that the ‘endpoints’ of these geodesics lie in the boundary of H3, not in H3

itself. Planes appear either as vertical half-planes, or as hemispheres resting on
R2:

If two planes meet then their intersection is a geodesic. The most important prop-
erty of the upper half-space model is that it is conformal, meaning that an angle
between planes under the hyperbolic metric equals the Euclidean angle between
the half-planes and/or hemispheres. For example, the following angle θ looks like
a π/4 angle, so it is a π/4 angle:
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This lets us build hyperbolic polyhedra with specified angles by pushing
planes around. For example, the diagram

P0 (1)

describes a polyhedron P0 with four walls, corresponding to the nodes, with the
interior angle between two walls being π/2, π/3 or π/4 according to whether the
nodes are joined by no edge, a single edge or a double edge. For now, ignore the col-
ors of the nodes; they play no role until theorem 2. We can build a concrete model
of P0 by observing that the first three nodes describe a Euclidean (π/2, π/4, π/4)
triangle, so the first three walls should be arranged to appear as vertical half-
planes. Sometimes pictures like this can be easier to understand if you also draw
the view down from vertical infinity; here are both pictures:

How to fit in the fourth plane? After playing with it one discovers that it cannot
appear as a vertical halfplane, so we look for a suitable hemisphere. It must be
orthogonal to two of our three walls, so it is centered at the foot of one of the half-
lines of intersection. The radius of the hemisphere is forced to be 2 because of the
angle it makes with the remaining wall (namely π/3). We have drawn the picture
so that the hemisphere is centered at the foot of the back edge. The figure should
continue to vertical infinity, but we cut it off because seeing the cross-section makes
the polyhedron easier to understand. We’ve also drawn the view from above; the
boundary circle of the hemisphere strictly contains the triangle, corresponding to
the fact that P0 does not descend all the way to the boundary R2.

(2)
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We think of P0 as an infinitely tall triangular chimney with its bottom bitten off
by a hemisphere. The dimensions we have drawn on the overhead view refer to
Euclidean distances, not hyperbolic ones. The “radius” of a hemisphere has no
intrinsic meaning in hyperbolic geometry; indeed, the isometry group of H3 acts
transitively on planes.

Readers may enjoy trying their hands at this by drawing polyhedra for the
diagrams

P1

P2

P3

(3)

where the absent, single and double bonds mean the same as before, a triple bond
indicates a π/6 angle, a heavy bond means parallel walls and a dashed bond means
ultraparallel walls. In the last two cases we describe the meaning by pictures:
parallelism means

or or

and ultraparallelism means

or

That is, when two planes do not meet in H3, we call them parallel if they meet at
the boundary of H3, and ultraparallel if they do not meet even there.

Diagrams like (1) and (3) are called Coxeter diagrams after H. S. M. Coxeter,
who introduced them to classify the finite groups generated by reflections. Given a
random diagram, there is no guarantee that one can find a hyperbolic polyhedron
with those angles, but if there is one then it describes a discrete group acting on
H3:

Theorem 1 (Poincaré Polyhedron Theorem). Suppose P ⊆ H3 is a polyhedron
(i.e., the intersection of a finite number of closed half-spaces) with every dihedral
angle of the form π/(an integer). Let Γ be the group generated by the reflections
across the walls of P . Then Γ is discrete in IsomH3 and P is a fundamental
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domain for Γ in the strong sense: every point of H3 is Γ-equivalent to exactly one
point of P .

The proof is a very pretty covering space argument; see [5] for this and
for a nice introduction to Coxeter groups in general. A reflection across a plane
means the unique isometry of H3 that fixes the plane pointwise and exchanges the
components of its complement. A reflection across a vertical half-plane looks like
an ordinary Euclidean reflection, and a reflection across a hemisphere means an
inversion in it; here are before-and-after pictures of an inversion.

An inversion exchanges vertical infinity with the point of R2 “at the center” of the
hemisphere.

The data of a group Γ acting discretely on H3 is encoded by an object called
an orbifold. As a topological space it is H3/Γ, but the orbifold has more structure.
An orbifold chart on a topological space X is a continuous map from an open
subset U of Rn to X , that factors as

U → U/ΓU → X,

where ΓU is a finite group acting on U and the second map is a homeomorphism
onto its image. Our H3/Γ has lots of such charts, because if x ∈ H3 has stabilizer
Γx and U is a sufficiently small open ball around x, then

U → U/Γx → H3/Γ

is an orbifold chart. An orbifold is a space locally modeled on a manifold mod-
ulo finite groups. Formally, an orbifold X is a hausdorff space covered by such
charts, with the compatibility condition that if x ∈ X lies in the image of charts
U → U/ΓU → X and U ′ → U ′/ΓU ′ → X then there are preimages v and v′ of x
in U and U ′ with neighborhoods V and V ′ preserved by ΓU,v and ΓU ′,v′ , an iso-
morphism ΓU,v

∼= ΓU ′,v′ and an equivariant isomorphism τV,V ′ between V and V ′

identifying v with v′. The group ΓU,v is called the local group at x, and the nature
of the isomorphisms τV,V ′ determines the nature of the orbifold. That is, if all the
τV,V ′ are homeomorphisms then X is a topological orbifold, if all are real-analytic
diffeomorphisms then X is a real-analytic orbifold, if all are hyperbolic isometries
then X is a hyperbolic orbifold, and so on. So H3/Γ is a hyperbolic orbifold. There
is a notion of orbifold universal cover which allows one to reconstruct H3 and its
Γ-action from the orbifold H3/Γ.
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Only in two dimensions is it easy to draw pictures of orbifold charts; here
they are for the quotient of the upper half-plane H2 by the group Γ generated by
reflections across the edges of the famous (π/2, π/3, π/∞) triangle.

mod out by Γ−→

Here are local orbifold charts around various points of H3/Γ:

For three-dimensional Coxeter groups essentially the same thing happens: the local
chart at a generic point of a wall is the quotient of a 3-ball by a reflection, and
along an edge it is the quotient of a 3-ball by a dihedral group. One needs to
understand the finite Coxeter groups in dimension 3 in order to understand the
folding at the vertices, but this is not necessary here.

We care about hyperbolic orbifolds because it turns out that moduli spaces
arising in algebraic geometry are usually orbifolds, and it happens sometimes that
such a moduli space happens to coincide with a quotient of hyperbolic space (or
complex hyperbolic space or one of the other symmetric spaces). So we can some-
times gain insight into the algebraic geometry by manipulating simple objects like
tilings of hyperbolic space.

Suppose a Lie group G acts properly on a smooth manifold X , with finite
stabilizers. (Properly means that each compact set K in X meets only “compactly
many” of its translates—that is, there exists a compact set in G such that if g ∈ G
lies outside it, then K ∩ gK = ∅. This is needed for the quotient space to be
Hausdorff.) Because G acts on the left, we write G\X for the quotient, which is an
orbifold by the following construction. For x ∈ X one can find a small transversal T
to the orbit G.x, which is preserved by the stabilizer Gx. Then T → Gx\T → G\X
gives an orbifold chart. In particular, the local group at the image of x in G\X is
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Gx. If X is real-analytic and G acts real-analytically then G\X is a real-analytic
orbifold.

Now we come to the case which concerns us. Let C be the set of binary sextics,
i.e., nonzero 2-variable homogeneous complex polynomials of degree 6, modulo
scalars, so C = CP 6. Let CR be the subset given by those with real coefficients,
C0 the smooth sextics (those with 6 distinct roots), and CR

0 the intersection. Then
G = PGL2C acts on C and C0 and GR = PGL2R acts on CR and CR

0 . The moduli
space M0 of smooth binary sextics is G\C0, of 3 complex dimensions. The real
moduli space M

R

0 = GR\CR

0 is not the moduli space of 6-tuples in RP 1; rather it is
the moduli space of nonsingular 6-tuples in CP 1 which are preserved by complex
conjugation. This set has 4 components, MR

0,j being GR\CR

0,j , where j indicates the
number of pairs of conjugate roots. It turns out that G acts properly on C0, and
since the point stabilizers are compact algebraic subgroups of G they are finite;
therefore M0 is a complex-analytic orbifold and the MR

0,j are real-analytic orbifolds.
The relation with hyperbolic geometry begins with the following theorem:

Theorem 2. Let Γj be the group generated by the Coxeter group of Pj from (1) or
(3), together with the diagram automorphism when j = 1. Then MR

0,j is the orbifold

H3/Γj , minus the image therein of the walls corresponding to the blackened nodes
and the edges corresponding to triple bonds. Here, ‘is’ means an isomorphism of
real-analytic orbifolds.

In the second lecture we will see that the faces of the Pj corresponding to
blackened nodes and triple bonds are very interesting; we will glue the Pj together
to obtain a real-hyperbolic description of the entire moduli space.

References. The canonical references for hyperbolic geometry and an introduction
to orbifolds are Thurston’s notes [15] and book [16]. The book is a highly polished
treatment of a subset of the material in the notes, which inspired a great deal of
supplementary material, e.g., [4]. For other applications of hyperbolic geometry
to real algebraic geometry, see Nikulin’s papers [12] and [13], which among other
things describe moduli spaces of various sorts of K3 surfaces as quotients of Hn.

Lecture 2

We will not really provide a proof of theorem 2; instead we will develop the ideas
behind it just enough to motivate the main construction leading to theorem 4
below. Although theorem 2 concerns smooth sextics, it turns out to be better to
consider mildly singular sextics as well. Namely, let Cs be the set of binary sextics
with no point of multiplicity 3 or higher, and let ∆ ⊆ Cs be the discriminant,
so C0 = Cs − ∆. (For those who have seen geometric invariant theory, Cs is the
set of stable sextics, hence the subscript s.) It is easy to see that ∆ is a normal
crossing divisor in Cs. (In the space of ordered 6-tuples in CP 1 this is clear; to
get the picture in Cs one mods out by permutations.) Now let Fs be the universal
branched cover of Cs, with ramification of order 6 along each component of the
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preimage of ∆. Fs turns out to be smooth and the preimage of ∆ a normal crossing
divisor. More precisely, in a neighborhood of a point of Fs describing a sextic with
k double points, the map to Cs is given locally by

(z1, . . . , z6) 7→ (z6
1 , . . . , z6

k, zk+1, . . . , z6) ,

where the branch locus is the union of the hypersurfaces z1 = 0, . . . , zk = 0. Let F0

be the preimage of C0 and let Γ be the deck group of Fs over Cs. We call an element
of Fs (resp. F0) a framed stable (resp. smooth) binary sextic. Geometric invariant
theory implies that G acts properly on Cs, and one can show that this G-action
lifts to one on Fs which is not only proper but free, so G\Fs is a complex manifold.
The reason we use 6-fold branching rather than some other sort of branching is
that in this case G\Fs has a nice description, given by the following theorem. See
the appendix for a sketch of the Hodge theory involved in the proof.

Theorem 3 (Deligne-Mostow [6]). There is a properly discontinuous action of Γ on
complex hyperbolic 3-space CH3 and a Γ-equivariant complex-manifold diffeomor-
phism g : G\Fs → CH3, identifying G\F0 with the complement of a hyperplane
arrangement H in CH3.

Complex hyperbolic space is like ordinary hyperbolic space except that it has
3 complex dimensions, and hyperplanes have complex codimension 1. There is an
upper-half space model analogous to the real case, but the most common model
for it is the (open) complex ball. This is analogous to the Poincaré ball model for
real hyperbolic space; we don’t need the ball model except to see that complex
conjugation of CH3, thought of as the complex 3-ball, has fixed-point set the real
3-ball, which is H3.

Given a framed stable sextic S̃, theorem 3 gives us a point g(S̃) of CH3.

If S̃ lies in FR

0 (the preimage of CR

0 ), say over S ∈ CR

0 , then we can do better,
obtaining not just a point of CH3 but also a copy of H3 containing it. The idea
is that complex conjugation κ of C0 preserves S and lifts to an antiholomorphic
involution (briefly, an anti-involution) κ̃ of F0 that fixes S̃. This uses the facts
that F0 → C0 is a covering space and that π1(F0) ⊆ π1(C0) is preserved by κ.
Riemann extension extends κ̃ to an anti-involution of Fs. Since κ normalizes G’s
action on Cs, κ̃ normalizes G’s action on Fs, so κ̃ descends to an anti-involution κ′

of CH3 = G\Fs. Each anti-involution of CH3 has a copy of H3 as its fixed-point
set, so we have defined a map gR from FR

0 to the set of pairs

(x ∈ CH3, a copy of H3 containing x). (4)

Note that κ̃ fixes every point of FR

0 sufficiently near S̃, so all nearby framed real sex-
tics determine the same anti-involution κ′ of CH3. Together with the G-invariance
of g, this proves that gR is invariant under the identity component of GR. A closer
study of gR shows that it is actually invariant under all of GR. We write K0 for the
set of pairs (4) in the image gR(FR

0 ). An argument relating points of Cs preserved
by anti-involutions in Go (Z/2) to points of CH3 preserved by anti-involutions in
Γo(Z/2) shows that if x ∈ FR

0 has image (g(x), H), then every pair (y ∈ H−H, H)
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also lies in K0. That is, K0 is the disjoint union of a bunch of H3’s, minus their in-
tersections with H. The theoretical content of theorem 2 is that gR : GR\FR

0 → K0

is a diffeomorphism.
The computational part of theorem 2 is the explicit description of K0, in

enough detail to understand M0 = G\FR

0 /Γ = K0/Γ concretely. It turns out that
Γ, H and the anti-involutions can all be described cleanly in terms of a certain
lattice Λ over the Eisenstein integers E = Z[ω=e2πi/3]. Namely, Λ is a rank 4 free
E-module with Hermitian form

〈a|a〉 = a0ā0 − a1ā1 − a2ā2 − a3ā3 . (5)

The set of positive lines in P (C1,3 = Λ ⊗E C) is a complex 3-ball (i.e., CH3),
Γ = PAut Λ, H is the union of the hyperplanes orthogonal to norm −1 elements
of Λ, and the anti-involutions of CH3 corresponding to the elements of K0 are
exactly

κ0 : (x0, x1, x2, x3) 7→ (x̄0, x̄1, x̄2, x̄3)

κ1 : (x0, x1, x2, x3) 7→ (x̄0, x̄1, x̄2,−x̄3)

κ2 : (x0, x1, x2, x3) 7→ (x̄0, x̄1,−x̄2,−x̄3)

κ3 : (x0, x1, x2, x3) 7→ (x̄0,−x̄1,−x̄2,−x̄3)

(6)

and their conjugates by Γ. We write H3
j for the fixed-point set of κj .

Since H3
0 , . . . , H3

3 form a complete set of representatives for the H3’s com-
prising K0, we have

M
R

0 = K0/Γ =
3

∐

j=0

(H3
j − H)

/

(its stabilizer Γj in Γ)

Understanding the stabilizers Γj required a little luck. Vinberg devised an algo-
rithm for searching for a fundamental domain for a discrete group acting on Hn

that is generated by reflections [18]. It is not guaranteed to terminate, but if it
does then it gives a fundamental domain. We were lucky and it did terminate; the
reflection subgroup of Γj turns out to be the Coxeter group of the polyhedron Pj .

One can obtain our polyhedra by applying his algorithm to the Z-sublattices
of Λ fixed by each κj . For example, an element of the κ2-invariant part of Λ has

the form (a0, a1, a2

√
−3, a3

√
−3) with a0, . . . , a3 ∈ Z, of norm a2

0 −a2
1 − 3a2

2 − 3a2
3.

Similar analysis leads to the norm forms

〈a|a〉 = a2
0 − a2

1 − a2
2 − a2

3

〈a|a〉 = a2
0 − a2

1 − a2
2 − 3a2

3

〈a|a〉 = a2
0 − a2

1 − 3a2
2 − 3a2

3

〈a|a〉 = a2
0 − 3a2

1 − 3a2
2 − 3a2

3

in the four cases of (6). Now, Γj lies between its reflection subgroup and the
semidirect product of this subgroup by its diagram automorphisms. After checking



10 Daniel Allcock, James A. Carlson and Domingo Toledo

that the diagram automorphism of P1 lies in Γ1, the identification of the Γj is
complete.

The final part of theorem 2 boils down to considering how the H3’s comprising
K0 meet the hyperplanes comprising H. There is no big idea here; one just works
out the answer and writes it down. There are essentially two ways that the H3

fixed by an anti-involution κ of Λ can meet a hyperplane r⊥, where r ∈ Λ has
norm −1. It might happen that κ(r) is proportional to r, in which case H3 ∩ r⊥

is a copy of H2; this accounts for the deleted walls of the Pj . It can also happen
that κ(r) ⊥ r, in which case H3 ∩ r⊥ is a copy of H1; this accounts for the deleted
edges.

Now, the deleted faces are very interesting, and the next step in our discus-
sion is to add them back in. By theorem 3 we know that points of H represent
singular sextics, which occur along the boundary between two components of CR

0 .
For example,

Varying the remaining four points gives a family of singular sextics which lie in
the closures of both CR

0,0 and CR

0,1. This suggests reinstating the deleted walls of
P0 and P1 and gluing the reinstated wall of P0 to one of the reinstated walls of P1.
Which walls, and by what identification? There is really no choice here, because
H3

0 and H3
1 meet along an H2 that lies in H, namely the locus

{(a0, a1, a2, a3) ∈ C1,3 | a0, a1, a2 ∈ R and a3 = 0} .

This gives a rule for identifying the points of P0 and P1 that lie in this H2.
Carrying out the gluing visually is quite satisfying; we will draw the pictures

first and then worry about what they mean. We have indicated why P0 and P1

are glued; in a similar way, P1 and P2 are glued, as are P2 and P3. This uses up
all the gluing walls of the various H3

j /Γj because each has only two, except for
P0 and P3 which have one each. The j = 1 case is interesting because P1 has four
gluing walls, but H3

1/Γ1 has only two because the diagram automorphism of P1

exchanges them in pairs. So the gluing pattern is

P0 P1

/

(Z/2) P2 P3
(7)

Working with polyhedra is so much simpler than working with quotients of them
by isometries that we will carry out the gluing by assembling P1 and two copies
each of P0, P2 and P3, according to

P0

P0

P1

P2

P2

P3

P3

(8)
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and take the quotient of the result by the diagram automorphism.
We begin by assembling P1 and the copies of P0 and P2. This requires pictures

of the polyhedra. P0 appears in (2), and for the others we draw both 3-dimensional
and an overhead views.

P2

P1

As before, length markings refer to Euclidean, not hyperbolic, distances.
There is only one way to identify isometric faces in pairs, pictured in figure 1.

We wind up with a square chimney with four bites taken out of the bottom, two
of radius 2 and two of radius

√
2. The result appears in figures 2 and 3 in overhead

and 3-dimensional views.
It is time to attach the two copies of P3. We won’t use a “chimney” picture

of P3 because none of the four vertical walls in figure 3 are gluing walls; rather,
the two gluing walls are the two small faces on the bottom. Happily, the region
bounded by one of these walls and the extensions across it of the three walls it
meets is a copy of P3. That is, P3 may be described as the interior of a hemisphere
of radius

√
2, intersected with a half-space bounded by a vertical half-plane and
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Figure 1. Overhead view of instructions for gluing P1 to two
copies of P0 and two copies of P2.

Figure 2. Overhead view of the result of gluing P1 to two copies
of P0 and two copies of P2.
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Figure 3. Three-dimensional view of the result of gluing P1 to
two copies of P0 and two copies of P2.

the exteriors of two hemispheres of radius 2:

The 3-dimensional picture shows a copy of P3 that fits neatly beneath one of
the bottom walls of figure 3 (the back one). Adjoining it, and another copy of P3

in the symmetrical way, completes the gluing described in (8). The result appears
in figures 4 and 5.
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Figure 4. Overhead view of the final result of gluing the poly-
hedra according to (8).

Figure 5. Three-dimensional view of the final result of gluing
the polyhedra according to (8).
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One can find its dihedral angles from our pictures; it is a Coxeter polyhedron
with diagram

This leads to our main result; we write ΓR for the group generated by this Coxeter
group and its diagram automorphism, and Q for H3/ΓR.

Theorem 4. We have MR

s
∼= Q = H3/ΓR, where “∼=” means the following:

(i) MR

s → Q is a homeomorphism;
(ii) MR

s → Q is an isomorphism of topological orbifolds if the orbifold structure
of Q is changed along the edges associated to triple bonds, by replacing the
dihedral group D6 of order 12 by Z/2 (see below);

(iii) MR

s → Q is an isomorphism of real-analytic orbifolds if Q is altered as in (ii)
and also along the loci where the Pj are glued together.

For the rest of the lecture we will focus on the perhaps-surprising subtlety
regarding the orbifold structures of MR

s and Q. We take FR

s to be the preimage of
CR

s , or equivalently the closure of FR

0 . Now, FR

s is not a manifold because of the

branching of the cover Fs → Cs. One example occurs at S̃ ∈ FR

s lying over a sextic
S ∈ CR

s with a single double point, necessarily real. In a neighborhood U of S, CR

s

is a real 6-manifold meeting the discriminant (a complex 5-manifold) along a real

5-manifold. A neighborhood of S̃ is got by taking a 6-fold cover of U , branched
along ∆. Therefore near S̃, FR

s is modeled on 12 half-balls of dimension 6 meeting
along their common 5-ball boundary. Here are pictures of the relevant parts of CR

s

and FR

s :

To get an orbifold chart around the image of S in MR

s , we take a small transversal
to GR.S and mod out by the stabilizer of S in GR, as explained in lecture 1. To
get an orbifold chart around the image of S̃ in GR\FR

s /Γ we do the following,
necessarily more complicated than before because FR

s isn’t a manifold. We choose

a transversal to GR.S̃, which is identified under g with a neighborhood of g(S̃) in
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the union X of six H3’s meeting along an H2. We take the quotient of X by the
stabilizer Z/6 of S̃ in Γ. The result is isometric to H3, and we take an open set in
this H3 as the domain for the orbifold chart, mapping to GR\FR

s /Γ by taking the
quotient of it by

(the simultaneous stabilizer of g(S̃) and X in Γ)
/

(Z/6) ,

which is exactly the stabilizer of S in GR. Identifying MR

s with GR\FR

s /Γ leads to
two orbifold charts around the same point. One can check that these charts define
the same topological orbifold structure but different real-analytic structures. This
leads to (iii) in theorem 4.

A slightly different phenomenon leads to (ii). The second possibility for how
∆ meets CR

s is at a sextic S with two complex conjugate double points. Then in a
neighborhood U of S, ∆ has two branches through S, meeting transversely. The
real 6-manifold CR

s meets ∆ along a real 4-manifold lying in the intersection of
these two branches. Since ∆ has two branches through S, there is not 6-to-1 but
36-to-1 branching near S̃ ∈ FR

s lying over S. It turns out that a neighborhood

Ũ of S̃ in FR

s may be taken to be the union of six real 6-balls meeting along a
common 4-ball, with each of the 6-balls mapping to U as a 6-to-1 cover branched
over the 4-ball. We get an orbifold chart around the image of S̃ in GR\FR

s /Γ

as follows. Choose a transversal to ΓR.S̃, which maps bijectively to its image in
CH3, which can be described as a neighborhood of g(S̃) in the union of six H3’s
meeting along an H1. Choose one of these H3’s and take the quotient of it by
the subgroup of Γ which carries both it and g(S̃) to themselves. Generically this
subgroup is D6, because of the Z/6 coming from the branching and the fact that
S has a Z/2 symmetry exchanging its double points. This gives an orbifold chart
U → U/D6 → GR\FR

s /Γ. (The idea also applies if S has more symmetry than the
generic Z/2.)

Now, this cannot be a valid description of the orbifold M
R

s , because the
symmetry group of S is Z/2 and so the local group at the image of S in MR

s

should be Z/2 not D6. The problem is that the Z/6 coming from the branching is
an artifact of our construction. To eliminate it, we take the quotient of the chart
by the Z/6, obtaining a topological ball, and use this ball rather than the original
one as the domain for the orbifold chart, with local group D6

/

(Z/6) = Z/2. The
effect of this operation is to replace the orbifold chart

−→ by −→
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We may picture this as a smoothing of the crease:

becomes .

Therefore MR

s ’s topological orbifold structure can be completely visualized by tak-
ing the hyperbolic polyhedron in figure 5 and smoothing two of its edges in this
manner.

Appendix

We will give a sketch of the Hodge theory behind theorem 3 and then make a few
remarks.

Theorem 3 is due to Deligne and Mostow [6], building on ideas of Picard;
our approach is more explicitly Hodge-theoretic, along the lines of our treatment
of moduli of cubic surfaces in [1]. Let S ∈ C0 be a smooth binary sextic, defined
by F (x0, x1) = 0, and let C be the 6-fold cyclic cover of CP 1 defined in CP 2

by F (x0, x1) + x6
2 = 0, which is a smooth curve of genus 10. It has a 6-fold

symmetry σ : x2 → −ωx2, where ω is our fixed cube root of unity. Now, σ∗ acts
on H1(C; C), and its eigenspaces refine the Hodge decomposition because σ acts
holomorphically. One finds H1

ω(C; C) = H1,0
ω (C)⊕H0,1

ω (C), the summands having
dimensions 1 and 3 respectively. In fact, H1,0

ω (C) is generated by the residue of
the rational differential

(x0 dx1 ∧ dx2 + x1 dx2 ∧ dx0 + x2 dx0 ∧ dx1) x3
2

F (x0, x1) + x6
2

.

We remark that our construction really only uses the 3-fold cover of CP 1 rather
than the 6-fold cover, because we are working with the ω-eigenspace. We have used
the 6-fold cover because the residue calculus is less fussy in projective space than
in weighted projective space. See remark 9 for a comparison of the approaches
using the 3-fold and 6-fold covers.

The Hermitian form

〈α|β〉 = i
√

3

∫

C

α ∧ β̄ (9)

on H1(C; C) is positive-definite on H1,0 and negative-definite on H0,1. Therefore
H1,0

ω (C) ↪→ H1
ω(C; C) is an inclusion of a positive line into a Hermitian vector

space of signature (1, 3), i.e., a point of the complex 3-ball consisting of all such

lines in P (H1
ω(C; C)). The

√
3 in (9) is not very important; it makes the map Z

defined below be an isometry.
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To identify this ball with a single fixed complex 3-ball we need an additional
structure, namely a choice of basis for the relevant part of H1(C; Z), that is suitably
compatible with σ. Let Λ(C) be the sublattice of H1(C; Z) where σ∗ has order 3,
together with the 0 element. Then Λ(C) is an E-module, with ω acting as σ∗. The
eigenspace projection

Z : Λ(C) ⊗E C = Λ(C) ⊗Z R → H1
ω(C; C)

is an isomorphism of complex vector spaces. The E-module structure and the
intersection pairing Ω together define a Hermitian form on Λ(C), namely

〈x|y〉 = −Ω(θx, y) + θΩ(x, y)

2
,

where θ = ω − ω̄. This turns out to be a copy of Λ, the lattice from (5). A
framing of S is a choice of isometry φ : Λ(C) → Λ, taken modulo scalars. (The
term ‘marking’ is already taken, usually indicating an ordering of the six points
of S.) It turns out that Z is an isometry, so together with φ it identifies the ball
in P (H1

ω(C; C)) with the standard one, i.e., the one in P (C1,3 = Λ ⊗E C). This
defines a holomorphic map g : F0 → B3. One constructs an extension of the
covering space F0 → C0 to a branched covering Fs → Cs and extends g to Fs; g
is then the isomorphism of theorem 3. One can show (see, e.g., [1, lemma 7.12])
that the monodromy homomorphism π1(C0, S) → PAut Λ(C) is surjective, and it
follows that F0 and Fs are connected, with deck group Γ = PAut Λ, and that g is
Γ-equivariant.

The reason that Fs → Cs has 6-fold branching along each component of the
preimage of ∆ is that one can use [14] to work out the monodromy in PAut Λ of
a small loop encircling ∆ at a general point of ∆; it turns out to have order 6.

We close with some remarks relevant but not central to the lectures.

Remark 1. We have treated moduli of unordered real 6-tuples in CP 1, which at
first might sound like only a slight departure from the considerable literature on
the hyperbolic structure on the moduli space of ordered 6-tuples in RP 1. Briefly,
Thurston [17, pp. 515–517] developed his own approach to theorem 3, and de-
scribed a component of GR\

(

(RP 1)6 − ∆
)

as the interior of a certain polyhe-

dron in H3. Using hypergeometric functions, Yoshida [19] obtained essentially the
same result, described the tessellation of GR\

(

(RP 1)6 − ∆
)

by translates of this
open polyhedron, and discussed the degenerations of 6-tuples corresponding to the
boundaries of the components. See also [8] and [10]. The relation to our work is
the following: the space GR\

(

(RP 1)6 −∆
)

is the quotient of H3
0 −H by the level 3

principal congruence subgroup Γ0,3 of Γ0. A component C of H3
0 −H is a copy of

Thurston’s open polyhedron, its stabilizer in Γ0 is S3 × Z/2, and the quotient of
C by this group is the Coxeter orbifold P0, minus the wall corresponding to the
blackened node of the Coxeter diagram. There are |S6|/|S3 × Z/2| = 60 compo-
nents of GR\

(

(RP 1)6 − ∆
)

, permuted by S6. The S6 action is visible because the

κ0-invariant part of Λ is Z1,3, and Γ0/Γ0,3 acts on the F3-vector space Z1,3/3Z1,3.
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Reducing inner products of lattice vectors modulo 3 gives a quadratic form on this
vector space, and S6 happens to be isomorphic to the corresponding projective
orthogonal group.

In a similar way, one could consider the moduli space of ordered 6-tuples of
distinct points in CP 1 such that (say) points 1 and 2 are conjugate and points
3, . . . , 6 are all real. This moduli space is a quotient of H3

1 − H by a subgroup
of Γ1. Other configurations of points give quotients by subgroups of the other
Γj . It is only by considering unordered 6-tuples that one sees all four types of
6-tuples occurring together, leading to our gluing construction. One way that our
results differ from earlier ones is that the gluing leads to a nonarithmetic group
(see remark 5 below), whereas the constructions using ordered 6-tuples lead to
arithmetic groups.

Remark 2. Γ has a single cusp in CH3, corresponding to the 6-tuple consisting of
two triple points; this is the unique minimal strictly semistable orbit in C (in the
sense of geometric invariant theory). The two cusps of ΓR correspond to the two
possible real structures on such a 6-tuple—the triple points can be conjugate, or
can both be real.

Remark 3. Part (ii) of theorem 4 lets us write down the orbifold fundamental group
πorb

1 (MR

s ). The theory of Coxeter groups shows that the reflection subgroup R of ΓR

is defined as an abstract group by the relations that the six generating reflections
are involutions, and that the product of two has order n when the corresponding
walls meet at angle π/n. The modification of orbifold structures amounts to setting
two of the generators equal if their walls meet at angle π/6. This reduces R to
D∞ × Z/2 where D∞ denotes the infinite dihedral group. Adjoining the diagram
automorphism gives πorb

1 (MR

s ) ∼= (D∞ × Z/2) o (Z/2), where the Z/2 acts on
D∞×Z/2 by exchanging the involutions generating D∞. This larger group is also
isomorphic to D∞×Z/2, so we conclude πorb

1 (MR

s ) ∼= D∞×Z/2. This implies that
MR

s is not a good orbifold in the sense of Thurston [16].

Remark 4. One can work out the volumes of the Pj by dissecting them into suitable
simplices, whose volumes can be expressed in terms of the Lobachevsky function
Λ(z). For background see [9] and [11]. The results are

j covolume(Γj) fraction of total

0 Λ(π/4)
/

6 = .07633... ∼ 8.66 %
1 15Λ(π/3)

/

16 = .31716... ∼ 36.01 %
2 5Λ(π/4)

/

6 = .38165... ∼ 43.33 %
3 5Λ(π/3)

/

16 = .10572... ∼ 12.00 %

These results suggest that Γ0 and Γ2 are commensurable, that Γ1 and Γ3 are
commensurable, and that these two commensurability classes are distinct. We
have verified these statements.

Remark 5. The group ΓR is nonarithmetic; this is suggested by the fact that we
built it by gluing together noncommensurable arithmetic groups in the spirit of
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Gromov and Piatetski-Shapiro’s construction of nonarithmetic lattices in O(n, 1).
(See [7].) Their results do not directly imply the nonarithmeticity of ΓR, so we
used 12.2.8 of [6]. That is, we computed the trace field of ΓR, which turns out to

be Q(
√

3), showed that ΓR is a subgroup of the isometry group of the quadratic

form diag[−1, +1, +1, +1] over Z[
√

3], and observed that the Galois conjugate of
this group is noncompact over R.

Remark 6. The anti-involutions (6) and their Γ-conjugates do not account for
all the anti-involutions of CH3 in Γ o (Z/2): there is exactly one more conjugacy
class. Pick a representative κ4 of this class and write H3

4 for its fixed-point set. The
points of H3

4 correspond to 6-tuples in CP 1 invariant under the non-standard anti-
involution of CP 1, which can be visualized as the antipodal map on the sphere
S2. A generic such 6-tuple cannot be defined by a sextic polynomial with real
coefficients, so it corresponds to no point of MR

0 , but it does represent a real point
of M0. One can show that the stabilizer Γ4 of H3

4 in Γ is the Coxeter group

and that the moduli space of such 6-tuples is H3
4/Γ4, with the edge corresponding

to the triple bond playing exactly the same role as before.

Remark 7. When discussing the gluing patterns (7) and (8) we did not specify
information such as which gluing wall of P2 is glued to the gluing wall of P3. It
turns out that there is no ambiguity because the only isometries between walls
of the Pj are the ones we used. But for the sake of explicitness, here are the
identifications. The gluing wall of P0 is glued to one of the top gluing walls of P1,
the gluing wall of P3 is glued to the left gluing wall of P2, and the other gluing
wall of P2 is glued to one of the bottom gluing walls of P1. The words ‘left’, ‘right’,
‘top’ and ‘bottom’ refer to the Coxeter diagrams (1) and (3), not to the pictures
of the polyhedra.

Remark 8. In these notes we work projectively, while in [3] we do not. This means
that our space C is analogous to the CP 19 of cubic surfaces in CP 3, which is the
projectivization of the space called C in [3], and similarly for the various versions
of F. The group in [3] analogous to G here is the projectivization of the group
called G there, and similarly for GR, Γ, Γj and ΓR.

Remark 9. As mentioned above, our treatment of the Hodge theory uses the 6-
fold cover when the 3-fold cover would do; in [2] we used just the 3-fold cover,
and the translation between the approaches deserves some comment. There, a 6-
tuple is described by a sextic polynomial f(x, y), Xf is the 3-fold cover of CP 1

branched over it, namely the zero-locus of f(x, y) + z3 = 0 in the weighted pro-
jective space CP 1,1,2, σ acts by z 7→ ωz, and the period map is defined by the
inclusion H1,0

ω̄ (Xf ) → H1
ω̄(Xf ; C). Because we use σ in a different way, we write

σ[2] for the σ of [2]. Now, the pairs (Xf , σ[2]) and (C/〈σ3〉, σ−1) are isomorphic,

where the last σ indicates the induced action of σ on C/〈σ3〉. The isomorphism is
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just x = x0, y = x1, z = x2
2. This identification gives

H1
σ[2]=ω̄(Xf ; C) = H1

σ=ω(C/〈σ3〉; C) = H1
σ=ω(C; C) .
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