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Abstract. Tits has defined Steinberg groups and Kac-Moody
groups for any root system and any commutative ring R. We es-
tablish a Curtis-Tits-style presentation for the Steinberg group St
of any rank ≥ 3 irreducible affine root system, for any R. Namely,
St is the direct limit of the Steinberg groups coming from the 1-
and 2-node subdiagrams of the Dynkin diagram. This leads to a
completely explicit presentation. Using this we show that St is
finitely presented if the rank is ≥ 4 and R is finitely generated as a
ring, or if the rank is 3 and R is finitely generated as a module over
a subring generated by finitely many units. Similar results hold for
the corresponding Kac-Moody groups when R is a Dedekind do-
main of arithmetic type.

1. Introduction

Suppose R is a commutative ring and A is one of the ABCDEFG
Dynkin diagrams, or equivalently its Cartan matrix. Steinberg de-
fined what is now called the Steinberg group StA(R), by generators
and relations [18]. It plays a central role in K-theory and some aspects
of Lie theory.

Kac-Moody algebras are infinite-dimensional generalizations of the
semisimple Lie algebras. When R = R and A is an irreducible affine
Dynkin diagram, the corresponding Kac-Moody group is a central ex-
tension of the loop group of a finite-dimensional Lie group. For a
general ring R and any generalized Cartan matrix A, the definition
of the Kac-Moody group is due to Tits [20]. He first constructed a
group functor R 7→ StA(R) generalizing Steinberg’s, also by genera-

tors and relations. Then he defined another functor R 7→ G̃A(R) as
a certain quotient of this. In this paper we will omit the tilde and
refer to GA(R) as the Kac-Moody group of type A over R. (Tits ac-

tually defined G̃D(R) where D is a root datum; by GA(R) we intend
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the root datum whose generalized Cartan matrix is A and which is
“simply-connected in the strong sense” [20, p. 551].)

The meaning of “Kac-Moody group” is far from standardized. In [20]
Tits wrote down axioms (KMG1)–(KMG9) that one could demand of
a functor from rings to groups before calling it a Kac-Moody func-
tor. He showed [20, Thm. 1′] that any such functor admits a natural
homomorphism from GA, which is an isomorphism at every field. So
Kac-Moody groups over fields are well-defined, and over general rings
GA approximates the yet-unknown ultimate definition. This is why we
refer to GA as the Kac-Moody group. But GA does not quite satisfy
Tits’ axioms, so ultimately some other language may be better. See
section 5 for more remarks on this.

The purpose of this paper is to simplify Tits’ presentations of StA(R)
and GA(R) when A is an irreducible affine Dynkin diagram of rank
(number of nodes) at least 3. In particular, we show that these groups
are finitely presented under quite weak hypotheses on R. This is sur-
prising because there is no obvious reason for an infinite-dimensional
group over (say) Z to be finitely presented, and Tits’ presentations are
“very” infinite. His generators are indexed by all pairs (root, ring el-
ement), and his relations specify the commutators of certain pairs of
these generators. Subtle implicitly-defined coefficients appear through-
out his relations.

To prove our finite presentation results, we will first establish explicit
presentations for StA(R) and GA(R) that are much smaller than Tits’
presentations, though still infinite if R is infinite. Namely, in [2] we
defined for any A a group functor we called the pre-Steinberg group
PStA. The definition is the same as Tits’ definition of StA, as modified
by Morita-Rehmann [14], except with some relations omitted. The
main result of this paper is that the omitted relations are redundant.
More formally, theorem 1 states that PStA → StA is an isomorphism.
This is useful because in [2, thm. 1.2] we gave a simple closed-form
presentation of PStA.

This presentation has generators Si and Xi(t), with i varying over
the nodes of the Dynkin diagram and t over R, and the relations are
(70)–(95) in [2]. A full list of the relations is not needed in this paper,
but for concreteness we give in table 1 the complete presentation when
A is simply-laced (and not A1). If multiple bonds are present then the
relations are more complicated but similar. Or see [2, sec. 2] for the
A1, A2, B2 and G2 cases, which are enough to present PStA(R) for
any A.
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Xi(t)Xi(u) = Xi(t+ u)

[S2
i , Xi(t)] = 1

Si = Xi(1)SiXi(1)S−1
i Xi(1)

 all i

SiSj = SjSi

[Si, Xj(t)] = 1

[Xi(t), Xj(u)] = 1

 all unjoined i 6= j

SiSjSi = SjSiSj

S2
i SjS

−2
i = S−1

j

Xi(t)SjSi = SjSiXj(t)

S2
iXj(t)S

−2
i = Xj(t)

−1

[Xi(t), SiXj(u)S−1
i ] = 1

[Xi(t), Xj(u)] = SiXj(tu)S−1
i


all joined i 6= j

Table 1. Defining relations for PStA(R) when A is
simply-laced. The generators are Xi(t) and Si where i
varies over the nodes of the Dynkin diagram and t over R.
When A is also affine, this also presents StA(R), by the-
orem 1.

Theorem 1 (Presentation of affine Steinberg and Kac-Moody groups).
Suppose A is an irreducible affine Dynkin diagram of rank ≥ 3 and R
is a commutative ring. Then the natural map PStA(R) → StA(R) is
an isomorphism.

In particular, StA(R) has a presentation with generators Si and
Xi(t), with i varying over the simple roots and t over R, and relators
(70)–(95) from [2]. (Or see table 1 when A is simply-laced.)

One obtains GA(R) by adjoining the relations

(1) h̃i(u)h̃i(v) = h̃i(uv)

for every simple root i and all units u, v of R, where

s̃i(u) := Xi(u)SiXi(1/u)S−1
i Xi(u)

h̃i(u) := s̃i(u)s̃i(−1).

We remark that if A is a spherical diagram (that is, its Weyl group
is finite) then PStA → StA is an isomorphism, essentially by the
definition of PStA. See [2] for details. So theorem 1 extends the
isomorphism PStA

∼= StA to the irreducible affine case (except for
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rank 2). See [3] for a further extension, to the simply-laced hyperbolic
case.

The key property of our presentation of PStA(R) is its description in
terms of the Dynkin diagram rather than the full (usually infinite) root
system, as in Tits’ construction. Furthermore, every relation involves
just one or two subscripts. In the simply-laced case one can check this
by examining table 1, and in the general case one examines the relators
(70)–(95) in [2]. Also, the extra relations (1) needed to define the Kac-
Moody group also involve only single subscripts. Therefore we obtain
the following corollary:

Corollary 2 (Curtis-Tits presentation). Suppose A is an irreducible
affine Dynkin diagram of rank ≥ 3 and R is a commutative ring. Con-
sider the groups StB(R) and the obvious maps between them, as B
varies over the singletons and pairs of nodes of A. The direct limit of
this family of groups equals StA(R).

The same result holds with St replaced by G throughout. �

A consequence of the corollary 2 is that StA(R)’s presentation can
be got by gathering together the presentations for the StB(R)’s. When
the latter groups are finitely presented, we can therefore expect that
StA(R) is too. The finite presentability of StB(R) was examined by
Splitthoff [17]. Using his work and some additional arguments, we
obtain the following:

Theorem 3 (Finite presentability). Suppose A is an irreducible affine
Dynkin diagram of rank ≥ 3 and R is a commutative ring. Then
StA(R) is finitely presented if either

(i) rkA > 3 and R is finitely generated as a ring, or
(ii) rkA ≥ 3 and R is finitely generated as a module over a subring

generated by finitely many units.

In either case, if the unit group of R is finitely generated as an abelian
group, then GA(R) is also finitely presented.

One of the main motivations for Splitthoff’s work was to understand
whether the Chevalley-Demazure groups over Dedekind domains of in-
terest in number theory, are finitely presented. This was settled by
Behr [5][6], capping a long series of works by many authors. The fol-
lowing analogue of these results follows immediately from theorem 3.
How close the analogy is depends on how well GA approximates what-
ever plays the role of the Chevalley-Demazure group scheme in the
setting of Kac-Moody algebras.
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Corollary 4 (Finite presentation in arithmetic contexts). Suppose K
is a global field, meaning a finite extension of Q or Fq(t). Suppose S
is a nonempty finite set of places of K, including all infinite places in
the number field case. Let R be the ring of S-integers in K.

Suppose A is an irreducible affine Dynkin diagram. Then Tits’ Kac-
Moody group GA(R) is finitely presented if

(i) rkA > 3 when K is a function field and |S| = 1;
(ii) rkA ≥ 3 otherwise. �

In a companion paper with Carbone [3] we prove analogues of all
four theorems for the simply-laced hyperbolic Dynkin diagrams, such
as E10.

We remark that if R is a field then the GA case of corollary 2 is due
to Abramenko-Mühlherr [1][15]. Namely, suppose A is any generalized
Cartan matrix which is 2-spherical (its Dynkin diagram has no edges
labeled ∞), and that R is a field (but not F2 if A has a double bond,
and neither F2 nor F3 if A has a multiple bond). Then GA(R) is the
direct limit of the groups GB(R). See also Caprace [8]. Abramenko-
Mühlherr [1, p. 702] state that if A is irreducible affine then one can
remove the restrictions R 6= F2,F3.

One of our goals in this work is to bring Kac-Moody groups into
the world of geometric and combinatorial group theory, which mostly
addresses finitely presented groups. For example: which Kac-Moody
groups admit classifying spaces with finitely many cells below some
chosen dimension? What other finiteness properties do they have? Do
they have Kazhdan’s property T? What isoperimetric inequalities do
they satisfy in various dimensions? Are there (non-split) Kac-Moody
groups over local fields whose uniform lattices (suitably defined) are
word hyperbolic? Are some Kac-Moody groups (or classes of them)
quasi-isometrically rigid? We find the last question very attractive,
since the corresponding answer [9][10][13][16] for lattices in Lie groups
is deep.

The author is very grateful to the Japan Society for the Promotion
of Science and to Kyoto University, for their support and hospitality.
He would also like to thank Lisa Carbone for useful comments on an
draft version of the paper.

2. Steinberg and pre-Steinberg Groups

We work in the setting of [20] and [2], so R is a commutative ring and
A is a generalized Cartan matrix. This matrix determines a complex
Lie algebra g = gA called the Kac-Moody algebra, and we write Φ for
the set of real roots of g. Tits’ definition of the Steinberg group StA(R)
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starts with the free product ∗α∈Φ Uα, where each root group Uα is a
copy of the additive group of R.

Tits calls a pair α, β ∈ Φ prenilpotent if some element of the Weyl
group W sends both α, β to positive roots, and some other element of
W sends both to negative roots. A consequence of this condition is
that every root in Nα + Nβ is real, which enabled Tits to write down
Chevalley-style relators for α, β. That is, for every prenilpotent pair
α, β he imposes relations of the form

(2)
[
element of Uα, element of Uβ

]
=

∏
γ∈θ(α,β)−{α,β}

(element of Uγ)

where θ(α, β) := (Nα + Nβ) ∩ Φ and N = {0, 1, 2, . . . }. In the general
case, the exact relations are given in a rather implicit form in [20, §3.6].
We give them explicitly in section 4, but only in the cases we need and
only as we need them. For Tits, and for purposes of this paper, this is
the end of the definition of StA(R).

The pre-Steinberg group PStA(R), defined in [2, sec. 7], imposes
these relations only for the classically nilpotent pairs α, β. This means
that α, β are linearly independent and (Qα ⊕ Qβ) ∩ Φ is finite. This
is equivalent to α, β being non-antipodal and lying in some A2

1, A2,
B2 or G2 root system. As the name suggests, such a pair is prenilpo-
tent. So PStA(R) is defined the same way as StA(R), just omitting
the Chevalley relations for prenilpotent pairs that are not classically
prenilpotent. In particular, StA(R) is a quotient of PStA(R), hence
the prefix “pre-”.

There are some additional relations in the pre-Steinberg group, and
in the Steinberg group as defined by Morita-Rehmann [14], whom we
follow. These relations are natural, and required to recover Steinberg’s
original definition in the A1 case. But they are irrelevant to this pa-
per. This is because they follow from the relations in PStA(R) that
we have already described, whenever A is 2-spherical without A1 com-
ponents. So we will make only the following remarks. First, the extra
relations are labeled (69) in [2] and (B′) in [14, p. 538]. Second, Tits
imposed them when defining the Kac-Moody group GA(R) as a quo-
tient of StA(R), in [20, eqn. (6)]. Third, Tits’ remark (a) in [20, p. 549]
explains why they follow from the relations in PStA(R).

We have not really defined StA(R) and PStA(R), just discussed the
general form of the definitions. The reason is that there are delicate
signs present that are not important in this paper. This has nothing to
do with Kac-Moody theory and is already present in Steinberg’s origi-
nal groups. Tits’ description of the relations (2) elegantly circumvents
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this problem, but at the cost of making all the relations implicit rather
than explicit.

One reason we introduced PStA is that we could write down a com-
pletely explicit presentation for it. The philosophy is that in many cases
of interest, the natural map PStA(R)→ StA(R) is an isomorphism. In
fact we presume that PStA is interesting only when this isomorphism
holds. When it does, we get the completely explicit presentation of
StA referred to in theorem 1. Its fine details are unimportant in this
paper.

3. New nomenclature for affine root systems

Our proof of theorem 1, appearing in the next section, refers to the
root system as a whole, with the simple roots playing no special role.
It is natural in this setting to use a nomenclature for the affine root
systems that emphasizes this global perspective.

The names we use are Ãn, . . . , G̃2, B̃ even
n , C̃ even

n , F̃ even
4 , G̃ 0 mod 3

2 and

B̃C odd
n . Their virtues are: the subscript is the rank (minus 1, as usual),

the corresponding finite root system is indicated by the capital letter(s),

and the construction of X̃ ···n is visible in the superscript. We now give
the constructions along with the correspondence with Kac’s nomencla-
ture [12, pp. 54–55].

Suppose Φ is a root system of type Xn = An≥1, Bn≥2, Cn≥2, Dn≥2,
E6,7,8, F4 or G2, and Λ is its root lattice. We define the root system Φ

of type X̃n as Φ×Z ⊆ Λ := Λ⊕Z. It corresponds to Kac’s X
(1)
n . This

can be seen by taking simple roots for Φ and adjoining (ᾱ, 1) where ᾱ
is the lowest long root of Φ.

For Xn = Bn, Cn or F4 we define X̃ even
n as the set of (ᾱ,m) ∈ X̃n such

that m ≡ 0 mod 2 if ᾱ is long. These correspond to Kac’s D
(2)
n+1, A

(2)
2n−1

and E
(2)
6 respectively. This can be seen as in the previous paragraph,

using the lowest short root instead of the lowest long root.

We define G̃ 0 mod 3
2 by the same construction, with the condition m ≡

0 mod 2 replaced by m ≡ 0 mod 3. This corresponds to Kac’s D
(3)
4 , by

the same recipe as the previous paragraph.
For the last affine root system we recall that BCn≥2 is the union of

the Bn and Cn root systems. It is non-reduced and has 3 lengths of
roots, called short, middling and long. Taking Φ = BCn, we define the

root system Φ of type B̃C odd
n as the set of all (ᾱ,m) ∈ Φ×Z such that

m is odd if ᾱ is long. Although Φ is non-reduced, Φ is reduced because

of this parity condition. Kac’s notation is A
(2)
2n . To check this, begin

with the set of roots in B̃C odd
n having m = 0, which has type Bn, take
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simple roots for it, and adjoin (2ᾱ, 1) where ᾱ is the lowest short root

of Bn. The Dynkin diagram of these roots is then Kac’s A
(2)
2n .

In all cases, the root system of type X̃ ···n is the set of pairs (root of Xn,
m ∈ Z), satisfying the condition that if the root is long then m has the
property indicated in the superscript.

4. The isomorphism PStA(R)→ StA(R)

This section is devoted to proving theorem 1, whose hypotheses we
assume throughout. Our goal is to show that the Chevalley relations
for the classically prenilpotent pairs imply those of the remaining pre-
nilpotent pairs. We will begin by saying which pairs of real roots are
prenilpotent and which are classically prenilpotent. Then we will ana-
lyze the pairs that are prenilpotent but not classically prenilpotent.

We fix the affine Dynkin diagram A, write Φ,Φ,Λ,Λ as in section 3,
and use an overbar to indicate projections of roots from Φ to Φ. It
is easy to see that α, β ∈ Φ are classically prenilpotent just if their
projections ᾱ, β̄ ∈ Φ are linearly independent. The following lemma
describes which pairs of roots are prenilpotent but not classically pre-
nilpotent, and what their Chevalley relations are (except for one special
case discussed later).

Lemma 5. Suppose α, β ∈ Φ are distinct. Then the following are
equivalent:

(i) α, β are prenilpotent but not classically prenilpotent;
(ii) ᾱ, β̄ differ by a positive scalar factor;

(iii) ᾱ, β̄ are equal, or one is twice the other and Φ = B̃C odd
n .

When these equivalent conditions hold, the Chevalley relations between
Uα,Uβ in Tits’ definition of StA(R) are [Uα,Uβ] = 1, unless Φ =

B̃C odd
n , ᾱ and β̄ are the same short root of Φ = BCn, and α + β ∈ Φ.

Proof. Recall that two roots α, β ∈ Φ form a prenilpotent pair if some
element of the affine Weyl group W sends both to positive roots, and
some other element of W sends both to negative roots. We gave simple
roots for Φ in section 3, including a choice of simple roots for the subset
Φ0 having m = 0. With respect to these, α = (ᾱ,m) ∈ Φ is positive
just if either m > 0, or m = 0 and ᾱ is positive in Φ0.

The “translation” part of the affine Weyl group acts on Φ by shears
(ᾱ,m) 7→ (ᾱ,m+ φ(ᾱ)), with φ a linear function Λ→ Z. The set of φ
occurring in this way is a subgroup of finite index in Hom(Λ,Z). This
makes it easy to see that if ᾱ, β̄ are linearly independent, then some
shear in W sends α, β to positive roots, and another one sends them
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to negative roots. The same argument works if ᾱ, β̄ differ by a positive
scalar factor. So α, β are prenilpotent in these cases.

If ᾱ, β̄ differ by a negative scalar factor then some positive linear
combination of α, β has the form (0,m). The affine Weyl group acts
trivially on the second summand in Λ = Λ ⊕ Z. It follows that if
some element of W sends α, β to positive (resp. negative) roots, then
m is positive (resp. negative). Since m cannot be both positive and
negative, α, β cannot be a prenilpotent pair.

We have shown that α, β ∈ Φ fail to be prenilpotent just if ᾱ, β̄
are negative multiples of each other. We remarked above that α, β
are classically prenilpotent just if ᾱ, β̄ are linearly independent. This
proves the equivalence of (i) and (ii). To see the equivalence of (ii)
and (iii) we refer to the fact that Φ is a reduced root system (i.e, the
only positive multiple of a root that can be a root is that root itself)

except in the case Φ = B̃C odd
n . In this last case, the only way one root

of Φ = BCn can be a positive multiple of a different root is that the
long roots are got by doubling the short roots.

The proof of the final claim is similar. Except in the excluded case,
we have Φ ∩ (Nᾱ + Nβ̄) = {ᾱ, β̄}. The corresponding claim for Φ
follows, so θ(α, β) − {α, β} is empty and the right hand side of (2) is
the identity. That is, the Chevalley relations for α, β read [Uα,Uβ] = 1.
(In the excluded case we remark that Φ ∩ (Nα + Nβ) = {α, β, α + β}.
So the Chevalley relations set the commutators of elements of Uα with
elements of Uβ equal to certain elements of Uα+β. See case 6 below.) �

Recall that PStA(R) is defined by the Chevalley relations of the
classically prenilpotent pairs, and StA(R) by those of all prenilpotent
pairs. So to prove theorem 1 it suffices to show that if α, β are pre-
nilpotent but not classically prenilpotent, then their Chevalley relations
already hold in PSt := PStA(R).

The cases we must address are given in the lemma above, and in
every case but one we must establish [Uα,Uβ] = 1. Each case begins by
choosing two roots in Φ, of which β is a specified linear combination,
and whose projections to Φ are specified. Given the global description
of Φ from section 3, this is always easy. Then we use the Chevalley
relations for various classically prenilpotent pairs to deduce the Cheval-
ley relations for α, β. When necessary we refer to [2, (79)–(92)] for the
exact forms of the Chevalley relations.

The proof of theorem 1 now falls into seven cases, according to Φ
and the relative position of α and β.
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Case 1 of theorem 1. Assume ᾱ = β̄ is a root of Φ = An≥2, Dn or
En, or a long root of Φ = G2. Choose γ̄, δ̄ ∈ Φ as shown, and choose
lifts γ, δ ∈ Φ summing to β. (Choose any γ ∈ Φ lying over γ̄, define
δ = β − γ, and use the global description of Φ to check that δ ∈ Φ.

This is trivial except in the case Φ = G̃ 0 mod 3
2 , when it is easy.)

γ̄

ᾱ, β̄

δ̄

Because ᾱ + γ̄, ᾱ + δ̄ /∈ Φ, it follows that α + γ, α + δ /∈ Φ. So the
Chevalley relations [Uα,Uγ] = [Uα,Uδ] = 1 hold. The Chevalley re-
lations for γ, δ imply [Uγ,Uδ] = Uγ+δ = Uβ. (These relations are [2,
(89)] in the G2 case and [2, (81)] in the others. One can write them as
[Xγ(t), Xδ] = Xγ+δ(tu) in the notation of the next paragraph.) Since
Uα commutes with Uγ and Uδ, it also commutes with Uβ, as desired. �

The other cases use the same strategy: express an element of Uβ in
terms of other root groups, and then evaluate its commutator with an
element of Uα. But the calculations are more delicate. We will work
with explicit elements Xγ(t) ∈ Uγ for various roots γ ∈ Φ. Here t varies
over R, and the definition of Xγ(t) depends on a choice of basis vector
eγ for the corresponding root space gγ ⊆ g. One should think of Xγ(t)
as “exp(teγ)”. Following Tits [20, §3.3], there are two equally canonical
choices for eγ, differing by a sign. Changing one’s choice corresponds
to negating t. This choice of sign is irrelevant to the arguments below,
except that a choice is required in order to write down the relations
explicitly.

The Chevalley relations in [2] are given in a form originally due to
Demazure. For example, if λ, σ are long and short simple roots for a
B2 root system, then their relations are given in [2, (85)] as

(3) [Xσ(t), Xλ(u)] · SσXλ(−t2u)S−1
σ · SλXσ(tu)S−1

λ = 1,

for all t, u ∈ R. The advantage of this form is technical: to write
down the relation, one only needs to specify generators for gσ and gλ,
not the other root spaces involved. But for explicit computation one
must choose generators for these other root spaces. Because Sσ and
Sλ permute the root spaces by the reflections in σ and λ, the second
and third terms in (3) lie in Uλ+2σ and Uλ+σ respectively. Therefore,
after choosing suitable generators eλ+2σ and eλ+σ for gλ+2σ and gλ+σ,
we may rewrite (3) as

(4) [Xσ(t), Xλ(u)] ·Xλ+2σ(−t2u) ·Xλ+σ(tu) = 1.
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We could just as well replace eλ+2σ (resp. eλ+σ) by its negative; then
we would also replace −t2u (resp. tu) by its negative.

Case 2 of theorem 1. Assume ᾱ = β̄ is a long root of Φ = Bn≥2, Cn≥2,
BCn≥2 or F4. Our first step is to choose roots λ̄, σ̄ ∈ Φ as pictured:

λ̄ ᾱ, β̄

σ̄

This is easily done using any standard description of Φ. (Note: al-
though λ̄ stands for “long” and σ̄ for “short”, σ̄ is actually a middling
root in the case Φ = BCn.)

Our second step is to choose lifts λ, σ ∈ Φ of them with β = λ+ 2σ.

If Φ = B̃n, C̃n or F̃ 4 then one chooses any lift σ of σ̄ and defines
λ as β − 2σ. This works since every element of Λ lying over a root

of Φ is a root of Φ. If Φ = B̃ even
n , C̃ even

n , F̃ even
4 or B̃C odd

n then this
argument might fail since Φ is “missing” some long roots. Instead,
one chooses any λ ∈ Φ lying over λ̄ and defines σ as (β − λ)/2. Now,
β − λ = (β̄ − λ̄,m) with the second entry being even by the meaning
of the superscript even or odd. Also, β̄ − λ̄ is divisible by 2 in Λ by the
figure above. It follows that σ ∈ Λ. Then, as an element of Λ lying
over a short (or middling) root of Φ, σ lies in Φ.

Because σ, λ are simple roots for a B2 root system inside Φ, their
Chevalley relation (4) holds in PSt. It shows that any element of
Uβ = Uλ+2σ can be written in the form

(5)
[
(some xλ ∈ Uλ), (some xσ ∈ Uσ)

]
· (some xλ+σ ∈ Uλ+σ).

Referring to the picture of Φ shows that α + λ /∈ Φ. Therefore the
Chevalley relations in PSt include [Uα,Uλ] = 1. In particular, Uα
commutes with the first term in the commutator in (5). The same
argument shows that Uα also commutes with the other terms. This
shows that the Chevalley relations present in PSt imply [Uα,Uβ] = 1,
as desired. �

Case 3 of theorem 1. Assume ᾱ = β̄ is a short root of Φ = Bn≥2, Cn≥2

or F4, or a middling root of Φ = BCn≥2. We may choose λ, σ ∈ Φ with
sum β and the following projections to Φ (by a simpler argument than
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in the previous case):

λ̄
ᾱ, β̄

σ̄

The Chevalley relations for σ, λ are (4), showing that any element of
Uβ = Uσ+λ can be written in the form

(6) (some xλ+2σ ∈ Uλ+2σ) ·
[
(some xλ ∈ Uλ), (some xσ ∈ Uσ)

]
.

As in the previous case, we will conjugate this by an arbitrary ele-
ment of Uα. This requires the following Chevalley relations. We have
[Uα,Uλ+2σ] = 1 and [Uα,Uλ] = 1 by the same argument as before. What
is new is that the Chevalley relations for α, σ depend on whether α+σ
is a root. If it is, then we get [Uα,Uσ] ⊆ Uα+σ, and if not then we get
[Uα,Uσ] = 1. In the second case we see that Uα commutes with (6),
proving [Uα,Uβ] = 1 and therefore finishing the proof.

In the first case, conjugating (6) by a element of Uα yields

xλ+2σ ·
[
xλ, (some xα+σ ∈ Uα+σ) · xσ

]
which we can simplify by further use of Chevalley relations. Namely,
neither λ+ α+ σ nor α+ 2σ is a root, so Uα+σ centralizes Uλ and Uσ.
So xα+σ centralizes the other terms in the commutator, hence drops
out, leaving (6). This shows that conjugation by any element of Uα
leaves invariant every element of Uβ. That is, [Uα,Uβ] = 1. �

Case 4 of theorem 1. Assume ᾱ = β̄ is a short root of Φ = G2. This
is the hardest case by far. Begin by choosing roots σ̄, λ̄ ∈ Φ as shown,
with lifts σ, λ ∈ Φ summing to β.

σ̄ ᾱ, β̄

λ̄

Many different root groups appear in the argument, so we choose a
generator eγ of γ’s root space, for each γ ∈ Φ which is a nonnegative
linear combination of α, σ, λ.

Next we write down the G2 Chevalley relations in PSt that we will
need, derived from [2, (86)–(92)]. We will write them down in the

Φ = G̃2 case and then comment on the simplifications that occur if

Φ = G̃ 0 mod 3
2 . After negating some of the eγ, for γ involving σ and λ
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but not α, we may suppose that the Chevalley relations [2, (92)] for
σ, λ read

(7) [Xσ(t), Xλ(u)] = Xσ+λ(−tu)X2σ+λ(t
2u)X3σ+λ(t

3u)X3σ+2λ(2t
3u2).

Then we may negate eα+2σ+λ if necessary, to suppose the Chevalley
relations [2, (90)] for α, 2σ + λ read

(8) [Xα(t), X2σ+λ(u)] = Xα+2σ+λ(3tu).

After negating some of the eγ for γ involving α and σ but not λ, we
may suppose that the Chevalley relations [2, (91)] for α and σ read

(9) [Xα(t), Xσ(u)] = Xα+σ(−2tu)Xα+2σ(−3tu2)X2α+σ(−3t2u)

We know the Chevalley relations [2, (90)] for σ and α + σ have the
form

(10) [Xσ(t), Xα+σ(u)] = Xα+2σ(3εtu)

where ε = ±1. We cannot choose the sign because we’ve already used
our freedom to negate eα+2σ in order to get (9). Similarly, we know
that the Chevalley relations [2, (89)] for λ and α + 2σ are

(11) [Xλ(t), Xα+2σ(u)] = Xα+2σ+λ(ε
′tu)

for some ε′ = ±1. (We will see at the very end that ε = 1 and ε′ = −1.)
We were able to write down these relations because we could work

out the roots in the positive span of any two given roots. This used the

assumption Φ = G̃2, but now suppose Φ = G̃ 0 mod 3
2 . It may happen that

some of the vectors appearing in the previous paragraph, projecting to
long roots of Φ = G2, are not roots of Φ. One can check that if α− β
is divisible by 3 in Λ then there is no change. On the other hand, if
α − β 6≡ 0 mod 3 then α + 2σ + λ, α + 2σ and 2α + σ are not roots.
Because α + 2σ + λ is not a root, (8) is replaced by [Uα,U2σ+λ] = 1.
And because (Qα ⊕ Qσ) ∩ Φ is now a root system of type A2 rather
than G2, (9) is replaced by [Xα(t), Xσ(t)] = Xα+σ(tu) and (10) by
[Uσ,Uα+σ] = 1. Finally, there is no relation (11) because there is no
longer a root group Uα+2σ. The calculations below use the relations
(7)–(11). To complete the proof, one must also carry out a similar
calculation using (7) together with the altered versions of (8)–(10).
This calculation is so much easier that we omit it.

Since β = σ + λ, we may use (7) with t = 1 to express any element
of Uβ as

Xβ(u) = X2σ+λ(u)X3σ+λ(u)X3σ+2λ(2u
2)[Xλ(u), Xσ(1)].

We use this to express the commutators generating [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X2σ+λ(u)Xα(t)−1 ·Xα(t)X3σ+λ(u)Xα(t)−1
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·Xα(t)X3σ+2λ(2u
2)Xα(t)−1

·
[
Xα(t)Xλ(u)Xα(t)−1, Xα(t)Xσ(1)Xα(t)−1

]
· [Xσ(1), Xλ(u)]

·X3σ+2λ(−2u2)X3σ+λ(−u)X2σ+λ(−u).

By (8) we may rewrite the first term (i.e., before the first dot) as
Xα+2σ+λ(3tu)X2σ+λ(u). By the Chevalley relations [Uα,U3σ+λ] = 1 we
may cancel the Xα(t)±1 in the second term. And similarly in the third
term, and in the first term of the first commutator. Then we rewrite
the second term of that commutator using the Chevalley relations (9).
The result is

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu)X2σ+λ(u)X3σ+λ(u)X3σ+2λ(2u
2)

·
[
Xλ(u), Xα+σ(−2t)Xα+2σ(−3t)X2α+σ(−3t2)Xσ(1)

]
·
[
Xσ(1), Xλ(u)

]
·X3σ+2λ(−2u2)X3σ+λ(−u)X2σ+λ(−u).

(12)

Our next goal is the rewrite the first commutator [· · · , · · · ] on the
right side. The first simplification is that all terms appearing in it
centralize U2α+σ. So we may drop the X2α+σ(−3t2) term. Then we
expand the commutator:

[· · · , · · · ] = Xλ(u)Xα+σ(−2t)Xα+2σ(−3t)Xσ(1)

·Xλ(−u)Xσ(−1)Xα+2σ(3t)Xα+σ(2t).

We will gather the Xλ and Xσ terms at the right end by repeated use
of the Chevalley relations in PSt. We move Xσ(−1) across Xα+2σ(3t)
using [Uσ,Uα+2σ] = 1. Then we move it across Xα+σ(2t) using the
special case

Xσ(−1)Xα+σ(2t) = Xα+2σ(−6εt)Xα+σ(2t)Xσ(−1)

of (10). The result is

[· · · , · · · ] = Xλ(u)Xα+σ(−2t)Xα+2σ(−3t)Xσ(1)

·Xλ(−u)Xα+2σ(3t− 6εt)Xα+σ(2t)Xσ(−1).

Now we move Xλ(−u) across Xα+2σ(3t− 6εt) using the special case

Xλ(−u)Xα+2σ(3t− 6εt) = Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
·Xα+2σ(3t− 6εt)Xλ(−u)

of (11). Then we move it further right using [Uλ,Uα+σ] = 1:

[· · · , · · · ] = Xλ(u)Xα+σ(−2t)Xα+2σ(−3t)Xσ(1)

·Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
Xα+2σ(3t− 6εt)Xα+σ(2t)
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·Xλ(−u)Xσ(−1).

Now, Xσ(1) commutes with the two terms following it, and we appeal
to (10) to move it across Xα+σ(2t):

[· · · , · · · ] = Xλ(u)Xα+σ(−2t)Xα+2σ(−3t)Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
·Xα+2σ(3t)Xα+σ(2t)Xσ(1)Xλ(−u)Xσ(−1).

The second through fifth terms commute with each other, leading to
much cancellation:

[· · · , · · · ] = Xλ(u)Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
Xσ(1)Xλ(−u)Xσ(−1).

Since Xλ(u) commutes with the term following it, we may rewrite this
as

[· · · , · · · ] = Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
[Xλ(u), Xσ(1)].

We plug this into (12) and cancel the commutators to get

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu)X2σ+λ(u)X3σ+λ(u)X3σ+2λ(2u
2)

·Xα+2σ+λ

(
−3ε′tu(1− 2ε)

)
X3σ+2λ(−2u2)

·X3σ+λ(−u)X2σ+λ(−u).

Now, α+ 2σ+λ and 3σ+ 2λ are distinct roots, both projecting to the
same long root of Φ. In case 1 we established the Chevalley relations in
PSt for two such roots, so the Xα+2σ+λ term in the middle commutes
with the X3σ+2λ term that precedes it. It centralizes the two terms
before that by the Chevalley relations in PSt. So all the terms on the
right cancel except the Xα+2σ+λ terms, leaving

[Xα(t), Xβ(u)] = Xα+2σ+λ

(
3tu(1− ε′ + 2εε′)

)
= Xα+2σ+λ(Ctu)

where C = 0, ±6 or 12 depending on ε, ε′ ∈ {±1}.
If C = 0 (i.e., ε = 1 and ε′ = −1) then we have established the

desired Chevalley relation [Uα,Uβ] = 1 and the proof is complete. Oth-
erwise we pass to the quotient St of PSt. Here Uα and Uβ commute,
so we derive the relation Xα+2σ+λ(12t) = 1 in St. Since this identity
holds universally, it holds for R = C, so the image of Uα+2σ+λ(C) in
St(C) is the trivial group. This is a contradiction, since St(C) acts
on the Kac-Moody algebra g, with Xα+2σ+λ(t) acting (nontrivially for
t 6= 0) by exp ad(teα+2σ+λ). Since C 6= 0 leads to a contradiction, we
must have C = 0 and so the Chevalley relation [Uα,Uβ] = 1 holds in
PSt. �
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Case 5 of theorem 1. Assume β̄ = 2ᾱ in Φ = BCn≥2. Choose µ̄, λ̄ ∈ Φ
as shown, and lift them to µ, λ ∈ Φ with µ + λ = β. (Mnemonic: µ is
middling and λ is long.)

λ̄
ᾱ

β̄

µ̄

As in the case 2 (when ᾱ and β̄ were the same long root of Φ = Bn),
we can express any element of Uβ in the form[

(some xλ ∈ Uλ), (some xµ ∈ Uµ)
]
· (some xµ+λ ∈ Uµ+λ).

Among the Chevalley relations in PSt is the commutativity of Uα with
Uλ, Uµ and Uµ+λ. So Uα also centralizes Uβ. �

Case 6 of theorem 1. Assume ᾱ = β̄ is a short root of Φ = BCn≥2

and α + β is a root. This is the exceptional case of lemma 5, and
the Chevalley relation we must establish is not [Uα,Uβ] = 1. We will
determine the correct relation during the proof. We begin by choosing
µ̄, σ̄ ∈ Φ as shown and lifting them to µ, σ ∈ Φ with µ+ σ = β, so σ, µ
generate a B2 root system.

σ̄ ᾱ, β̄
µ̄

We choose a generator eγ for the root space of each nonnegative linear
combination γ ∈ Φ of α, σ, µ. By changing the signs of eσ+µ and e2σ+µ

if necessary, we may suppose that the Chevalley relations [2, (85)] for
σ, µ are

(13) [Xσ(t), Xµ(u)] = Xσ+µ(−tu)X2σ+µ(t2u),

Since σ + µ = β we may take t = 1 in (13) to express any element of
Uβ:

(14) Xβ(u) = X2σ+µ(u)[Xµ(u), Xσ(1)].

Using this one can express any generator for [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X2σ+µ(u)Xα(t)−1

·
[
Xα(t)Xµ(u)Xα(t)−1, Xα(t)Xσ(1)Xα(t)−1

]
· [Xσ(1), Xµ(u)] ·X2σ+µ(−u).

(15)

By the Chevalley relations [Uα,U2σ+µ] = [Uα,Uµ] = 1, the Xα(t)±1’s
cancel in the first term and in the first term of the first commutator.
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Now we consider the Chevalley relations of α and σ. Since ᾱ+ σ̄ is a
middling root of Φ, and Φ contains every element of Λ lying over every
such root, we see that α + σ is a middling root of Φ. In particular,
(Qα ⊕ Qσ) ∩ Φ is a B2 root system, in which α and σ are orthogonal
short roots. The Chevalley relations [2, (84)] for α, σ are therefore

(16) [Xα(t), Xσ(u)] = Xα+σ(−2tu),

after changing the sign of eα+σ if necessary.
Next, µ+ σ + α = α+ β is a root by hypothesis. We choose eµ+σ+α

so that the Chevalley relations [2, (84)] for µ, α + σ are

(17) [Xµ(t), Xα+σ(u)] = Xµ+α+σ(−2tu).

Now we rewrite (15), applying the cancellations mentioned above
and rewriting the second term in the first commutator using (16):

[Xα(t), Xβ(u)] = X2σ+µ(u) ·
[
Xµ(u), Xα+σ(−2t)Xσ(1)

]
· [Xσ(1), Xµ(u)] ·X2σ+µ(−u).

(18)

We write out the first commutator on the right side and use the Cheval-
ley relations [Uα+σ,Uσ] = 1 and (17) to obtain[
Xµ(u), Xα+σ(−2t)Xσ(1)

]
= Xµ(u)Xα+σ(−2t) ·Xσ(1)

·Xµ(−u)Xσ(−1)Xα+σ(2t)

= Xµ+α+σ(4tu)Xα+σ(−2t)Xµ(u) ·Xσ(1)

·Xµ+α+σ(4tu)Xα+σ(2t)Xµ(−u)Xσ(−1).

Since µ+ α + σ = 2σ̄ is a long root of Φ = BCn, we know from case 5
that Uσ and Uµ+α+σ commute in PSt. And Uµ+α+σ centralizes all the
other terms by Chevalley relations in PSt. So we may gather the
Xµ+α+σ(4tu) terms at the beginning. Next, [Uσ,Uα+σ] = 1, so we may
move Xσ(1) to the right across Xα+σ(2t). Then we can use (17) again
to move Xµ(u) rightward across Xα+σ(2t). The result is[
Xµ(u), Xα+σ(−2t)Xσ(1)

]
= Xµ+α+σ(8tu)Xα+σ(−2t)

·Xµ+σ+α(−4tu)Xα+σ(2t)[Xµ(u), Xσ(1)]

= Xµ+α+σ(4tu)[Xµ(u), Xσ(1)].

Plugging this into (18) and canceling the commutators gives

[Xα(t), Xβ(u)] = X2σ+µ(u)Xµ+α+σ(4tu)X2σ+µ(−u)

= Xα+β(4tu).

Tits’ Chevalley relation in his definition of St has the same form, with
the factor 4 replaced by some integer C. If C 6= 4 then in St we deduce
Xα+β

(
(C − 4)tu

)
= 1 for all t, u ∈ R and all rings R, leading to the
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same contradiction we found in case 4. Therefore C = 4 and we have
established that Tits’ relation already holds in PSt. �

Case 7 of theorem 1. Assume ᾱ = β̄ is a short root of Φ = BCn≥2

and α + β is not a root. This is similar to the previous case but
much easier. We choose µ, σ and the eγ in the same way, except that
µ+σ+α is no longer a root, so the Chevalley relation (17) is replaced
by [Uµ,Uα+σ] = 1. We expand Xβ(u) as in (14) and obtain (18) as
before. But this time the Xα+σ(−2t) term centralizes both Uµ and
Uσ, so it vanishes from the commutator. The right side of (18) then
collapses to 1 and we have proven [Uα,Uβ] = 1 in PSt. �

5. Finite presentations

In this section we prove theorem 3, that various Steinberg and Kac-
Moody groups are finitely presented. At the end we make several re-
marks about possible variations on the definition of Kac-Moody groups.

Proof of theorem 3. We must show that StA(R) is finitely presented
under either of the two stated hypotheses. By theorem 1 it suffices to
prove this with PSt in place of St.

(ii) We are assuming rkA ≥ 3 and that R is finitely generated
as a module over a subring generated by finitely many units. The-
orem 1.4(ii) of [2] shows that if R satisfies this hypothesis and A is
2-spherical, then PStA(R) is finitely presented. This proves (ii).

(i) Now we are assuming rkA > 3 and that R is finitely generated as
a ring. Theorem 1.4(iii) of [2] gives the finite presentability of PStA(R)
if every pair of nodes of the Dynkin diagram lies in some irreducible
spherical diagram of rank ≥ 3. By inspecting the list of affine Dynkin
diagrams of rank > 3, one checks that this treats all cases of (i) except

A =
α β γ δ

(with some orientations of the double edges). In this case, no irre-
ducible spherical diagram contains α and δ.

For this case we use a variation on the proof of theorem 1.4(iii) of [2].
Consider the direct limit G of the groups StB(R) as B varies over all
irreducible spherical diagrams of rank ≥ 2. If rkB ≥ 3 then StB(R)
is finitely presented by theorem I of Splitthoff [17]. If rkB = 2 then
StB(R) is finitely generated by [2, thm. 11.5]. Since every irreducible
rank 2 diagram lies in one of rank > 2, it follows that G is finitely
presented. Now, G satisfies all the relations of StA(R) except for the
commutativity of St{α} with St{δ}. Because these groups may not be
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finitely generated, we might need infinitely many additional relations
to impose commutativity in the obvious way.

So we proceed indirectly. Let Yα be a finite subset of St{α} which
together with St{β} generates St{α,β}. This is possible since St{α,β}
is finitely generated. We define Yδ similarly, with γ in place of β. We
define H as the quotient of G by the finitely many relations [Yα, Yδ] = 1,
and claim that the images in H of St{α} and St{δ} commute.

The following computation in H establishes this. First, every ele-
ment of Yδ centralizes St{β} by the definition of G, and every element
of Yα by definition of H. Therefore it centralizes St{α,β}, hence St{α}.
We’ve shown that St{α} centralizes Yδ, and it centralizes St{γ} by the
definition of G. Therefore it centralizes St{γ,δ}, hence St{δ}.
H has the same generators as PStA(R), and its defining relations are

among those defining PStA(R). On the other hand, we have shown
that the generators of H satisfy all the relations in PStA(R). So
H ∼= PStA(R). In particular, PStA(R) is finitely presented.

It remains to prove the finite presentability of GA(R) under the extra
hypothesis that the unit group of R is finitely generated as an abelian
group. This follows immediately from [2, Lemma 11.2], which says that
for any generalized Cartan matrix A, and any commutative ring R with
finitely generated unit group, the kernel of StA(R)→ GA(R) is finitely
generated. �

Remark (Completions). We have worked with the “minimal” or “alge-
braic” forms of Kac-Moody groups. One can consider various comple-
tions of it, such as those surveyed in [19]. None of these completions
can possibly be finitely presented, so no analogue of theorem 3 exists.
But it is reasonable to hope for an analogue of corollary 2.

Remark (Chevalley-Demazure group schemes). If A is spherical then
we write CDA for the associated Chevalley-Demazure group scheme,
say the simply-connected version. This is the unique most natural (in
a certain technical sense) algebraic group over Z of type A. The kernel
of StA(R)→ CDA(R) is called K2(A;R) and contains the relators (1).
There is considerable interest in when CDA(R) is finitely presented, for
example [5][6]. We want to emphasize that our theorem 3 does not
resolve this question, because CDA(R) may be a proper quotient of
GA(R). Indeed, K2(A;R) can be extremely complicated.

For a non-spherical Dynkin diagram A, the functor CDA is not de-
fined. The question of whether there is a good definition, and what
it would be, seems to be completely open. Only when R is a field is
there known to be a unique “best” definition of a Kac-Moody group
[20, theorem 1(i), p. 553]. The main problem would be to specify what
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extra relations to impose on GA(R). The remarks below discuss the
possible forms of some additional relations.

Remark (Kac-Moody groups over integral domains). If R is an integral
domain with fraction field k, then it is open whether GA(R) → GA(k)
is injective. If GA satisfies Tits’ axioms then this would follow from
(KMG4), but Tits does not assert that GA satisfies his axioms. If
GA(R) → GA(k) is not injective, then the image seems better than
GA(R) itself as a candidate for the right Kac-Moody group.

Remark (Kac-Moody groups via representations). Fix a root datum D
and a commutative ring R. By using Kostant’s Z-form of the universal
enveloping algebra of g, one can construct a Z-form V λ

Z of any integrable
highest-weight module V λ of g. Then one defines V λ

R as V λ
Z ⊗ R. For

each real root α, one can exponentiate gα,Z⊗R ∼= R to get an action of
Uα ∼= R on V λ

R . One can define the action of the torus (R∗)n directly.
Then one can take the group Gλ

D(R) generated by these transformations
and call it a Kac-Moody group. This approach is extremely natural and
not yet fully worked out. The first such work for Kac-Moody groups
over rings is Garland’s landmark paper [11] treating affine groups; see
also Tits’ survey [19, §5], its references, and the recent articles [4][7].

Tits [20, p. 554] asserts that this construction allows one to build
a Kac-Moody functor satisfying all his axioms (KMG1)–(KMG9). We
imagine that he reasoned as follows. First, show that each Gλ

D is a
Kac-Moody functor and therefore by Tits’ theorem admits a canonical
functorial homomorphism from GA, where A is the generalized Cartan
matrix of D. (One cannot directly apply Tits’ theorem, because Gλ

D(R)
only comes equipped with the homomorphisms SL2(R) → Gλ

D(R) re-
quired by Tits when SL2(R) is generated by its subgroups

(
1 ∗
0 1

)
and(

1 0
∗ 1

)
. Presumably this difficulty can be overcome.) Second, define I

as the intersection of the kernels of all the homomorphisms GA → Gλ
D,

and then define the desired Kac-Moody functor as GA/I. (This also
does not quite make sense, since GA may also lack the required ho-
momorphisms from SL2. As before, presumably this difficulty can be
overcome.)

Remark (Loop groups). SupposeX is one of the ABCDEFG diagrams,

X̃ is its affine extension as in section 4, and R is a commutative ring.
The well-known description of affine Kac-Moody algebras and loop
groups makes it natural to expect that GX̃(R) is a central extension
of GX(R[t±1]) by R∗. The most general results along these lines that
I know of are Garland’s theorems 10.1 and B.1 in [11], although they
concern slightly different groups. Instead, one might simply define the
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loop group GX̃(R) as a central extension of CDX(R[t±1]) by R∗, where
the 2-cocycle defining the extension would have to be made explicit.
Then one could try to show that GX̃ satisfies Tits’ axioms.

It is natural to ask whether such a group GX̃(R) would be finitely
presented if R is finitely generated. If R∗ is finitely generated then this
is equivalent to the finite presentation of the quotient CDX(R[t±1]). If
rkX ≥ 3 then StX(R[t±1]) is finitely presented by Splitthoff’s theo-
rem I of [17]. Then, as Splitthoff explains in [17, §7], the finite pre-
sentability of CDX(R[t±1]) boils down to properties of K1(X,R[t±1])
and K2(X,R[t±1]).
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