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Abstract. We give a new proof of Brink’s theorem that the non-
reflection part of a reflection centralizer in a Coxeter group is free,
and make several refinements. In particular we give an explicit
finite set of generators for the centralizer and a method for com-
puting the Coxeter diagram for its reflection part. In many cases,
our method allows one to compute centralizers quickly in one’s
head. We also define “Vinberg representations” of Coxeter groups,
in order to isolate some of the key properties of the Tits cone.

Brink has proved the elegant result that the centralizer of a reflec-
tion in a Coxeter group is the semidirect product of a Coxeter group
by a free group [5]. In fact this free group is the fundamental group
of the component of the “odd Coxeter diagram” distinguished by the
conjugacy class of the reflection. We give a new proof of her result,
together with several refinements.

The first refinement is a method of computing the Coxeter diagram
of the Coxeter-group part of the centralizer. With a little effort we
develop this method to the point that many centralizer computations
are very easy. For example, the fact that the reflection centralizer in
W (E8) is W (E7) × 2 becomes an almost-instant mental computation.
We offer many other examples, including the reflection centralizer in
the Coxeter group of Bugaenko that acts cocompactly on 8-dimensional
hyperbolic space [7]. Our method shares the same foundation as that
of Brink and Howlett [6], which is a special case of an algorithm for
understanding normalizers of parabolic subgroups. (See also [1] and [3]
for related work.) However, in use it feels quite different.

The second refinement is an explicit finite set of generators for the
reflection centralizer; Brink only gave explicit generators for the free
part. This generating set plays a key role in the author’s work [2] with
Lisa Carbone on Kac-Moody groups.

Our proof of Brink’s theorem is quite different from hers, using cov-
ering spaces and topology in place of induction on word lengths. We
hope this alternate proof will be helpful to some people. In order to
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present the argument as clearly as possible we introduce what we call
a Vinberg representation of a Coxeter group, in honor of Vinberg’s
[15]. This is not strictly needed for the rest of the paper. However,
this notion isolates the relevant properties of the Tits cone and is more
flexible than it.

In section 1 we give the definition of a Vinberg representation, in
section 2 we describe the non-reflection part ΓΩ of the centralizer, in
section 3 we describe the Coxeter-group part WΩ × 2, in section 4 we
give many examples, and then in section 5 we give our explicit finite
generating set for the centralizer.

We follow standard conventions regarding Coxeter systems and di-
agrams [4], [12]. We also use the semi-standard term “spherical” for
a Coxeter system or diagram when the corresponding group is finite.
This reflects the fact that the group acts naturally on a sphere, rather
than say hyperbolic space. In the many places where we refer to the
parity of an edge label in a diagram, we use the convention that ∞ is
neither even nor odd.

The author is grateful to the Japan Society for the Promotion of
Science, the Clay Mathematics Institute and Kyoto University for their
support and hospitality during this work.

1. Vinberg representations

Let W be a group, which we will later see is a Coxeter group. A
Vinberg representation of it means a pair (V, U) where V is a faithful
finite-dimensional real representation of W and U is a nonempty W -
invariant open convex subset, satisfying (V1)–(V3) below. We name
these representations after Vinberg because they are essentially the
representations he studied in [15]. An involution s ∈ W is called a
reflection if it fixes a hyperplane V s of V pointwise; then it exchanges
the two half-spaces V s bounds. Since U is nonempty, W -invariant and
convex, Us = V s ∩ U is nonempty. We call this the mirror of s.

(V1) The mirrors of W ’s reflections are locally finite in U .
(V2) Each mirror is the mirror of only one reflection.
(V3) W is generated by its reflections.

It follows from (V1) that U−(all mirrors) is open in V , and we call the
closure in U of any one of its components a (Weyl) chamber. Also by
(V1), it makes sense to speak of a chamber’s faces, and in particular its
codimension 1 faces, called facets. If C is a chamber then the reflections
across (the mirrors containing) its facets are uniquely determined by
(V2), and we write ΠC for the set of them. We call two chambers
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adjacent (or neighbors) if their intersection is a facet of each. Then
they are exchanged by the reflection across that facet.

The next theorem shows that in this situation, all the usual proper-
ties of Coxeter groups hold. We omit the proof because it is not strictly
needed for our main results and is a minor variation on standard argu-
ments [15, thm. 2][4, ch. V§4].

Theorem 1.

(i) W acts simply transitively on chambers.
(ii) W acts properly discontinuously on U .
(iii) The W -stabilizer of any point of U is generated by reflections.
(iv) Each chamber maps bijectively to U/W .

Furthermore, for any chamber C, ΠC generates W , and defining rela-
tions for W with respect to this generating set are (st)m(s,t) = 1 when
m(s, t) < ∞, where s, t vary over ΠC and m(s, t) is the order of their
product. In particular, (W, ΠC) is a Coxeter system. �

Conversely, if (W, Π) is a Coxeter system then there is a Vinberg
representation (V, U) of W and a chamber C of it, such that Π =
ΠC . Then we call (V, U, C) a (Vinberg) representation of the Coxeter
system. The standard construction is the (open) Tits cone, and the
conclusions of theorem 1 are all standard results for it. See [15], [4] or
[12] for details.

We have formulated these ideas because the same Coxeter system
may have several different interesting representations. They all work
equally well for many purposes, but sometimes the presence of addi-
tional structure makes a particular representation better than others.
For example, the construction of the Tits cone starts with an inner
product on the vector space R

Π, and there is a choice involved for each
edge labeled ∞ in the Coxeter diagram. This choice can affect the sig-
nature of the inner product, and in particular can make it degenerate.
This can lead to natural representations of (W, Π) other than on the
Tits cone. For example V could be Minkowski space, U one of the
two cones of timelike vectors, and C the cone on a hyperbolic Coxeter
polytope (meaning that its dihedral angles are integral submultiples of
π).

Another example is that two Kac-Moody algebras may be very dif-
ferent from each other yet have isomorphic Weyl groups. The difference
is the choice of generalized Cartan matrix, which is essentially a special
choice of Vinberg representation.
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2. The non-reflection part of the centralizer

Now suppose (W, Π) is a Coxeter system and s ∈ W is conjugate
into Π. Our goal is to understand CW (s). Choose a Vinberg rep-
resentation (V, U, C) of (W, Π) and define WΩ as the subgroup of W
generated by the reflections that preserve V s and each of the two half-
spaces it bounds (call one of them 1

2
V ). Then (V s, Us) is a Vinberg

representation of WΩ, since the assumptions on W restrict well. (WΩ’s
faithfulness on V s follows from the preservation-of-half-spaces condi-
tion). In particular, WΩ is a Coxeter group (c.f. [9],[10]).

Now choose a chamber CΩ for WΩ in Us and define ΓΩ as the sub-
group of W that preserves CΩ (hence V s) and 1

2
V . Note that CΩ has

one dimension less than C. To avoid confusion we specify: when we
speak of chambers without mentioning WΩ explicitly, we always mean
chambers of W . The following theorem, essentially due to Howlett [11,
corollaries 3 and 7] (but see [6] for the non-spherical case) decomposes
CW (s) into 3 pieces. It reduces our analysis of the centralizer to a study
of WΩ and ΓΩ, which are called the reflection and nonreflection parts
of CW (s).

Theorem 2. CW (s) = 〈s〉 × 〈WΩ, ΓΩ〉, and the latter factor splits as
the semidirect product of WΩ by ΓΩ. �

As usual, the Coxeter diagram ∆C of a chamber C means the graph
with vertex set ΠC and an edge between s, t ∈ ΠC labeled by the order
m(s, t) of st, when m(s, t) > 2. In this paper we will avoid fixing a
chamber of W , and instead think of C := U/W as the “fundamental
chamber”. By theorem 1(iv) it may be canonically identified with
any chosen chamber. This allows us to speak of C’s faces, facets and
Coxeter diagram ∆. The proper faces of C correspond to the spherical
subdiagrams of ∆.

Our approach to understanding ΓΩ is that the interior C◦
Ω of CΩ is

the universal cover of part of the boundary of C. We define X as C

minus its interior and those codimension 2 faces that correspond to
even or absent edges in ∆. Our first step is to describe X; then we
establish the universal covering property.

Lemma 3. The dual complex of X is the “odd Coxeter diagram” ∆odd,
i.e., the graph with the same vertices as ∆, two being joined just if their
edge label in ∆ is odd.

Since X is a chamber minus some faces, we clarify our meaning: its
dual complex means the simplicial complex with a vertex for each facet
of C, and a simplex with any given set of vertices just if X contains the
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interior of the intersection of the corresponding facets. (The interior
of a face means that face minus its lower-dimensional faces.) Standard
arguments show that X and its dual complex are homotopy-equivalent.
This uses the fact that the link in C of any face is a simplex, which is a
rephrasing of the standard fact that chambers of finite Coxeter groups
are simplicial. By this and lemma 3, each component of X has free
fundamental group.

Proof. X contains no codimension 3 faces of C at all. This is because
such a face corresponds to a spherical 3-vertex diagram in ∆, and every
such diagram has a pair of unjoined vertices. So every codimension 3
face of C lies in a codimension 2 face that we discarded in the definition
of X. To finish the proof we observe that the codimension 2 faces of
C whose interiors lie in X are exactly the ones corresponding to odd
edges in ∆, by definition. �

Lemma 4. The natural map U → U/W = C induces a universal
covering map from C◦

Ω to a component of X, with deck group ΓΩ.

A nice mental image of C◦
Ω → X is of folding C◦

Ω along its intersec-
tions with mirrors of W other than Us, and then wrapping it around
the fundamental chamber C as one might wrap a Weyl-chamber-shaped
gift.

Proof. First we show that C◦
Ω contains no codimension 3 face φ of any

chamber C. If it did then we could apply an element in φ’s stabilizer
to suppose that C has a facet in CΩ. Then s ∈ ΠC and φ corresponds
to a rank 3 spherical subdiagram of ∆C containing s. Every reflection
in every rank 3 spherical Coxeter group is centralized by some other
reflection in it. (Just inspect the possible Coxeter diagrams and recall
that oddly-joined generators are conjugate.) It follows that WΩ con-
tains a reflection fixing φ, so φ lies in a mirror of WΩ. Since C◦

Ω is a
component of Us − (WΩ’s mirrors), it can’t contain φ.

The same argument shows that C◦
Ω contains no codimension 2 face

of any chamber C corresponding to an even edge label in ∆C . This
shows that U → U/W = C carries C◦

Ω into X. Finally, if C has a
facet F in CΩ and t ∈ ΠC is oddly joined to s, then (the interior of)
the corresponding codimension-2 face φ of C does lie in C◦

Ω. This is
because φ’s W -stabilizer is a dihedral group of twice odd order. In such
a group, no reflection centralizes any other. Furthermore, the facet (of
some other chamber) in Us on the other side of φ is equivalent under
this dihedral group to the other facet of C containing φ (i.e., not F ).
This is what we referred to when comparing C◦

Ω → C to wrapping a
gift. It follows that C◦

Ω → X is a local homeomorphism, and then it is
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easy to see that C◦
Ω → X is a covering map. It is a universal covering of

a component of X because C◦
Ω is convex, hence connected and simply

connected.
That the deck group is ΓΩ is the fact that if x, y ∈ C◦

Ω are W -
equivalent, say g(x) = y, then they are also ΓΩ-equivalent. If x, y are
generic (they lie on no mirrors except Us) then the stabilizer of each
is 〈s〉, so g must centralize s. Multiplying by s if necessary, we may
suppose g preserves 1

2
V , hence lies in ΓΩ. In the non-generic case their

stabilizers are dihedral of twice odd order. In such a group all reflections
are conjugate, so after following g by an element of W stabilizing y, we
may suppose g centralizes s. Then we may proceed as before. �

All that remains is to determine the component of X in terms of
s. Choose a chamber C with a facet F in CΩ, so s ∈ ΠC . Then
C◦

Ω/ΓΩ ⊆ X contains (the interior of) the facet of C corresponding to
F . To phrase this without reference to a specific chamber, we refer to
the well-known fact that the conjugacy classes of reflections in W are in
bijection with the components of ∆odd. So s distinguishes a component
∆odd

s of ∆odd, hence of X, and C◦
Ω/ΓΩ is this component.

Having proven the lemmas we will switch our focus from C◦
Ω to CΩ

to avoid fussing over the missing faces. By a tile we mean a facet
(of some chamber) that lies in CΩ. Its type means its image in C, or
the corresponding vertex of ∆. We summarize this section by phras-
ing Brink’s theorem in our language. It follows from the lemmas and
remarks above.

Theorem 5. Suppose (V, U) is a Vinberg representation of W , s ∈
W is a reflection, and CΩ, WΩ and ΓΩ are as above. Then the tiles
comprising CΩ are in bijection with the vertices of the universal cover
∆̃odd

s of ∆odd
s , with tiles meeting in codimension one if and only if the

corresponding vertices are joined. Under this correspondence, ΓΩ acts
by the deck transformations of ∆̃odd

s → ∆odd
s . In particular, ΓΩ is the

free group π1(∆
odd
s , s). �

3. The Coxeter diagram of WΩ

By theorem 1 and the definition of CΩ as a chamber for WΩ in the
Vinberg representation (V s, Us), the set of reflections across its facets is
a Coxeter system for WΩ. We write ∆Ω for the corresponding Coxeter
diagram. Our goal in this section is to describe it concretely, in a
manner making obvious the action of ΓΩ

∼= π1(∆
odd
s ).

Recall the definition above of a tile and its type. An arrow means a
facet of a tile, which is not a facet of any other tile—i.e., it lies in the
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boundary of CΩ. This peculiar terminology helps organize the calcu-
lations in examples. The arrows fall into equivalence classes according
to which facet of CΩ they lie in, which we call the arrow classes. To
describe ∆Ω we must find the arrow classes and understand how the
corresponding facets of CΩ meet.

We begin by finding the arrows. By theorem 5, the tiles are in 1-1
correspondence with the vertices of ∆̃odd

s . If J̃ is a tile then we write
J for its type. To J̃ we associate the unique chamber C that lies in
1
2
V and has J̃ as a facet. A facet of J̃ corresponds to a vertex of ∆C

that is not infinitely joined to s. By lemma 4, this facet of J̃ lies in
the boundary of CΩ just if the edge-label is even. Therefore we have
named the arrows:

Lemma 6. The arrows are in bijection with the pairs [J̃ , K], where J̃
and K are vertices of ∆̃odd

s and ∆ respectively, and the edge joining J
and K in ∆ is absent or evenly-labeled. �

The next step is to determine the dihedral angles among the arrows.
(We say they have dihedral angle π/n as a shorthand for saying the
product of the corresponding reflections has order n.)

Lemma 7. If J̃ is a vertex of ∆̃odd
s and K and L are vertices of ∆, such

that the subdiagram of ∆ formed by J , K and L appears in table 1, then
the indicated arrows intersect in codimension 1, with the stated dihedral
angle. Conversely, if two arrows meet in codimension 1 then there exist
such J̃ , K, L, such that the arrows are the ones indicated in the table.

Proof. Suppose [J̃ , K] and [J̃ ′, K ′] are arrows, whose intersection φ has
codimension one in each. Write C for the chamber associated to J̃ .
Then φ is a codimension 3 face of C, so it corresponds to a spherical
3-vertex subdiagram of ∆C , containing J and K. Write Y for the
corresponding finite Coxeter group and L for the third vertex. We
next verify the conclusions of the theorem if this subdiagram appears
in table 1.

The calculation takes place entirely in the standard representation
of Y , which we think of as transverse to φ. In this R

3, Us appears as
a hyperplane H , 1

2
V as a half-space bounded by H , C as a chamber of

Y with a facet in H , and J̃ equal to this facet. The two other facets
of this chamber correspond to K and L. We write FJ , FK and FL for
these facets, and RJK , RKL and RLJ for the rays where these facets
meet.

The simplest case is when J and L are evenly joined. Then [J̃ , L] is

also an arrow containing φ, so it is the only one other than [J̃ , K]. Also,
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J

K L
=⇒ [J̃ , K] and [J̃ , L] make angle π/4.(1)

even =⇒ [J̃ , K] ⊥ [J̃ , L].(2)

n =⇒ [J̃ , K] and [J̃ , L] make angle π/n.(3)

=⇒ [J̃ , K] ⊥ [L̃, K].(4)

odd =⇒ [J̃ , K] and [L̃, K] make angle π.(5)

=⇒ [J̃ , K] and [K̃, J ] make angle π.(6)

5 =⇒ [J̃ , K] ⊥ [K̃, J ].(7)

Table 1. Dihedral angles between facets of tiles; see
lemma 7. We implicitly label the vertices of all the dia-
grams J , K, L as in the first one. In the last two lines,
K̃ means the tile of type K adjacent to L̃, where (in the

last four lines) L̃ is the tile of type L adjacent to J̃ .

[J̃ , K] and [J̃ , L] correspond to RJK and RJL, so the angle between
them is the angle between these rays in R

3.
The next case is when J and L are oddly joined and L and K are

unjoined or evenly joined. Let Θ be the rotation around RLJ with
Θ(FL) in H but not overlapping FJ . Then L̃ corresponds to Θ(FL),

and [L̃, K] is the arrow meeting [J̃ , K] in φ; it corresponds to Θ(RKL).
So the angle between these arrows is the angle in R

3 between RJK

and Θ(RKL). (This rotation process is the reverse of the gift-wrapping
process of section 2.)

In the final case, J and L are oddly joined and so are L and K. We
will apply a second rotation. Namely, let Θ′ be the rotation around
Θ(RKL) with Θ′ ◦ Θ(FK) in H but not overlapping Θ(FL). Then K̃
corresponds to Θ′ ◦ Θ(FK), and [K̃, J ] is the arrow meeting [J̃ , K] in
φ; it corresponds to Θ′ ◦ Θ(RJK). The angle between these arrows is
the angle in R

3 between RJK and Θ′ ◦ Θ(RJK).
One can find these angles without computation. Consider the edges

EJ , EK and EL of the spherical triangle defined by FJ , FK and FL. In
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the three cases the desired angle is ℓ(EJ), ℓ(EJ) + ℓ(EL) and ℓ(EJ) +
ℓ(EK)+ℓ(EL), where ℓ indicates length. Drawing the tessellation of the
sphere by Y ’s chambers makes it easy to recognize which submultiple
of π this is. This justifies the entries in table 1.

The table is complete because one can write down all possibilities
for the spherical diagram on J , K and L, with J and K evenly joined
or unjoined since [J̃ , K] is an arrow. The possibilities other than those
in table 1 are

even

5

where we use the table’s labeling of vertices. The first and second differ
from (1) and (2) by K ↔ L, the third from (4) by J ↔ L and the last
from (7) by J ↔ K. In all cases the conclusion of the relevant line of
the table is symmetric under the same interchange. So if the diagram
of J, K, L doesn’t appear in the table then we just swap [J̃ , K] and
[J̃ ′, K ′] . �

The lemma allows one to compute the Coxeter diagram ∆Ω:

Theorem 8. The equivalence relation of arrows lying in the same facet
of CΩ is generated by the equivalence of [J̃ , K] with [L̃, K] in the situ-

ation of (5) and that of [J̃ , K] with [K̃, J ] in the situation of (6).
If two arrow classes have representative arrows as in one of the other

entries of the table, then the corresponding facets of CΩ have the listed
dihedral angle. If they have no such representatives then they do not
meet, and the edge of ∆Ω joining them is labeled ∞.

Proof. If two arrows lie in the same facet of CΩ then there is a chain
of arrows joining them, each lying in that facet of CΩ and meeting the
next in codimension 1. This proves the first claim. The second follows
immediately from lemma 7, and the third is obvious. �

We close the section with a few remarks on the language. We visual-
ize [J̃ , K] as an arrow pointing from the vertex J̃ of ∆̃odd

s to the vertex
K of ∆. We define a tail class as an equivalence class of facets under
the relation (5), i.e., [J̃ , K] and [L̃, K] are equivalent when J, K, L form
the configuration (5). The reason for the name is that the equivalence
corresponds to the first of the following “moves” on arrows: the tail
moves around.

odd = odd =
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The second picture is a graphical interpretation of (6), although one

must be careful keeping track of which vertices lie in ∆̃odd
s and which

lie in ∆. In our examples in the next section ∆odd
s will be a tree, so

∆̃odd
s may be regarded as a subdiagram of ∆. In that case we can take

the figure literally.

4. Examples

In this section we give many examples illustrating theorem 8. If ∆odd
s

is not a tree then ∆Ω is usually infinite, so we focus on the tree case.
We generally proceed by working out the tail classes, fusing them into
arrow classes, and then finding the angles.

Suppose first that ∆ is a tree of single edges (edge label 3). Then
there is only one class of reflection, so we don’t need to choose a com-
ponent of ∆odd. The tail classes are easy to work out: each contains
a unique arrow [J, K] where J and K have distance 2 in ∆. (Proof:
move the tail toward the head.) The tail classes fuse in pairs, got by
reversing these arrows. The end result is that the generators for WΩ

are in bijection with the A3 diagrams in ∆. Almost all the angles can
be worked out using (3). In our situation it reads: if two arrow classes
have representatives with the same tail, then their edge label in ∆Ω is
the same as the one between their tips in ∆.

The first example is An≥3, which has n − 2 arrow classes:

→

We have drawn double-headed arrows because of the fusion of tail
classes. Every arrow class has a representative with tail at the left-
most vertex. So the joins between these arrow classes are the same as
the joins between the right-hand tips of the arrows. So WΩ = W (An−2).

The second example is Dn≥6, which has n − 1 arrow classes:

d e f

a

b

c

→

b

c

d
e fa

Choosing representative arrows with tails at the top left shows that a is
orthogonal to all the other generators except perhaps c. Repeating the
argument with tails at the lower left shows that a is also orthogonal to
c. Then taking tails at the rightmost vertex shows that b, . . . , f form
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a Dn−2 diagram. So WΩ = W (A1Dn−2). The D4 and D5 cases are the
same provided one interprets D2 and D3 as A2

1 and A3.

The third example is the affine diagram D̃n≥6, which gives WΩ =

W (Ã1D̃n−2) in a similar way:

d e

a

b

c

h

f

g

→

b

c

d

f

g

e∞
a h

The new phenomenon is that the arrows a and h cannot be moved into
a spherical 3-vertex diagram. So those facets of CΩ don’t meet, hence
the edge label ∞. The D̃4 and D̃5 cases are the same, provided one
interprets D̃2 and D̃3 as Ã2

1 and Ã3.
These examples are enough to treat the general case:

Theorem 9. If ∆ is a tree of single edges, then the vertices of ∆Ω are
the A3 subdiagrams of ∆, with edge labels as follows. If the convex hull
of two A3’s in ∆ has type D (resp. D̃), then their edge label in ∆Ω is
2 (resp. ∞). Otherwise, it is the same as the one in ∆ between their
middle vertices. �

In the special case of trivalent branch points, no two adjacent, ∆Ω

can be got from ∆ by the following operation: “blow up” each branch
point

→

and then erase all the end vertices of ∆, and finally add some edges
labeled ∞. When there is only one branch point there are no ∞’s. For
example, the Y555 diagram gives

→

We chose this example because it explains the appearance of the
latter figure in the ATLAS [13] entry for the monster simple group M ,
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given the appearance of the former. Namely, the bimonster (M ×M):2
is described as a quotient of the Y555 Coxeter group, and M × 2 as
a quotient of the Coxeter group of the second figure. Given the first,
one should expect the second, because a Y555 reflection maps to an
involution in the bimonster with centralizer M × 2. (One can repeat
the process, so the reflection centralizer in the second diagram maps
to the involution centralizer 2B × 2 ⊆ M × 2 where B is the baby
monster. Since the nonreflection part is now Z, the Y555 approach to
M distinguishes a conjugacy class in B, up to inversion. I don’t know
what class this is or whether it has any real meaning.)

Another example is ∆ = E8, which we show in several steps to
illustrate the interaction between blowing up branch points and erasing
ends:

→

→ → = E7

The first step blows up the branch point, the second shows what will
be erased, and the third actually erases it.

An example with an edge label ∞ is the reflection group of the even
unimodular Lorentzian lattice of dimension 18. By [16] (see also [8]),
∆ is

which after explosion and erasure yields

! !

Since the vertices marked “!” correspond to A3’s in ∆ whose convex
hull is a D̃16, they should be joined by an edge labeled ∞. Adjoin-
ing this edge completes the description of ∆Ω. (Remark: this is the
reflection group of the even Lorentzian lattice of dimension 17 and
determinant ±2. Because it acts on hyperbolic space H16, it makes
sense to ask whether this ∞ represents parallelism or ultraparallelism.
It represents parallelism, because the corresponding infinite dihedral
group lies in the affine group W (D̃16).)

As a meatier example we treat a Coxeter group found by Bugaenko
[7]. It acts cocompactly on H8, and is the only known cocompact
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example on any Hn≥8. Here ∆ is

5 5

where the dashed line means an edge label ∞. The same argument as
before shows that every tail class is represented by a unique arrow from
one vertex to another at distance 2. So we can name the 13 generators
of WΩ:

f f ′

g g′

e e′d d′

c c′b b′

a
5 5

Note that f and g represent distinct arrow classes, because only “A3

arrows” are reversible. Taking tails at the left end of ∆ shows that
f, e, d, c, a, b′, d′, e′, g′ are joined the same way as their right endpoints
are joined in ∆. Exchanging primed and unprimed letters gives all
joins among f ′, e′, d′, c′, a, b, d, e, g, so we know all the joins except those
between a member of {g, b, c′, f ′} and a member of {g′, b′, c, f}. By the
priming symmetry there are only 10 cases left to work out. Taking
tails based at the middle vertex gives bb′ = ∞ and gg′ = 2. Taking
tails based at the lower left vertex gives bc = bg′ = cg = 2. We have
fg = 2 by (7). Finally, we have bf = cc′ = cf ′ = ff ′ = ∞ because
in none of these cases is there a 3-vertex spherical diagram containing
representatives for both arrow classes. So ∆Ω is

a

b

c

d

e fg

5

b′

c′

d′

e′f ′ g′

5

We have avoided the case of ∆odd
s containing cycles, because then

WΩ is seldom finitely generated. But ∆ = Ãn gives WΩ = W (Ãn−2)
with ΓΩ acting nontrivially. We recommend this to the reader as a
pleasing exercise. Another interesting exercise is to work out what
happens when one attaches a vertex using only even edges. This could
be used to derive the diagrams for the reflection groups of the odd
bimodular Lorentzian lattices [16, p. 34] from the diagrams for the odd
unimodular Lorentzian lattices of one larger dimension [16, p. 32].
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5. Explicit generators for the centralizer

In this section we give an explicit finite generating set for any reflec-
tion centralizer, which we wish to record for a forthcoming application
to Kac-Moody groups [2].

Suppose (W, Π) is a Coxeter system with diagram ∆Π and γ = (t0,
. . . , tn) is an edge-path in ∆odd

Π , with 2li +1 being the label on the edge
joining ti−1 and ti. Then we set

pγ := (t1t0)
l1(t2t1)

l2 · · · (tntn−1)
ln

(or pγ = 1 if γ has length 0). This word is Brink’s π(t0, . . . , tn). If u is
a vertex of ∆ with m(tn, u) even, say 2λ, then we define

rγ,u := pγ · u(tnu)λ−1 · p−1
γ .

Theorem 10. Suppose s ∈ Π, Z is a set of edge-loops in ∆odd
Π based

at s that generate π1(∆
odd
Π , s), and δt is an edge-path in ∆odd

Π from s to
t, for each vertex t in s’s component of ∆odd

Π . Suppose (V, U, C) is any
Vinberg representation (V, U, C) of (W, Π). Then the pz∈Z generate ΓΩ.
Together with the rδt,u such that m(tn, u) is even, they generate WΩ:ΓΩ.
Finally, CW (s) = 〈s, pz, rδt,u〉.

In the rest of the section we assume the hypotheses of the theorem,
and identify C with C = U/W , so that the elements of Π label the
nodes of ∆. We will consider vertices t0, . . . , tn of ∆ and chambers
C0, . . . , Cn, and write ti,j for the element of ΠCi

corresponding to tj .

Lemma 11. Suppose C0 is a chamber in 1
2
V containing a tile T0 of

type t0 ∈ Π, and t0 is joined to t1 ∈ Π by an edge labeled 2l1+1. Define
w1 = (t0,1s)

l1; then C1 := w1(C0) is the chamber in 1
2
V containing the

tile T1 of type t1 that is adjacent to T0 in ∆̃odd
s .

Proof. After unwinding the language this becomes a simple statement
about a dihedral group of order 2(2l1 + 1) acting on R

2. �

Extending the notation of the lemma, suppose γ = (t0, . . . , tn) is an
edge-path in ∆odd

s , with m(ti−1, ti) = 2li + 1. Then we use the lemma
inductively to construct a sequence of chambers C1, . . . , Cn that lie
in 1

2
V and contain tiles T1, . . . , Tn of types t1, . . . , tn, with Ti−1 and

Ti adjacent in ∆̃odd
s for each i. Namely, Ci := wi(Ci−1) where wi =

(ti−1,is)
li. Obviously wn · · ·w2w1 sends C0 to Cn. We defined pγ above

so that it would also do this:

Lemma 12. If C0 = C, so that t0,j = tj for all j, then pγ sends C to
Cn.
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Proof. We use induction on n, the case n = 0 being trivial. For the
inductive step we write β for the initial segment of γ of length n − 1.
So pβ(C0) = Cn−1 and therefore tn−1,j = pβtjp

−1
β for all j. Also, the

meaning of “Tn−1 has type tn−1” is that s = tn−1,n−1. So

wn · · ·w1 = (tn−1,ns)lnpβ = (tn−1,ntn−1,n−1)
lnpβ = pβ(tntn−1)

ln = pγ.

�

Lemma 13. Writing u′ for the element of ΠCn
corresponding to some

u ∈ Π with m(tn, u) = 2λ, u′(su′)λ−1 is a reflection in WΩ, across the
arrow [Tn, u] of the tile Tn.

Proof. Similar to lemma 11, this is a simple check in the dihedral group
of order 4λ. �

Proof of theorem 10. First we show that the pz generate ΓΩ. If T is
any tile of type s, then there is a path in ∆̃odd

s from T0 to T . After
pushing this down to a path γ in ∆odd

s , lemma 12 says that pγ carries
T0 to T . The linear span of each of T0 and T is V s, so pγ centralizes
s. Also, by the inductive construction, pβ carries the chamber in 1

2
V

containing T0 to the chamber in 1
2
V containing T . So pγ preserves 1

2
V ,

hence lies in ΓΩ. Since the z ∈ Z generate π1(∆
odd
s , s) = ΓΩ, the pz∈Z

generate ΓΩ.
If m(tn, u) = 2λ, then

rγ,u = pγ · u(tnu)λ−1 · p−1
γ = (pγup−1

γ )(s · pγup−1
γ )λ−1,

which in the notation of lemma 13 is u′(su′)λ−1. So the rδt,u are the
reflections across the arrows of one tile of each type. Their conjugates
by ΓΩ are therefore the reflections across the facets of CΩ. This proves
WΩ:ΓΩ = 〈pz, rδt,u〉. The final claim follows from theorem 2. �
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