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Abstract.

We show that the Heisenberg groups H?"*! of dimension five and higher, considered as Rieman-
nian manifolds, satisfy a quadratic isoperimetric inequality. (This means that each loop of length
L bounds a disk of area ~ L?). This implies several important results about isoperimetric inequal-
ities for discrete groups that act either on H?"*! or on complex hyperbolic space, and provides
interesting examples in geometric group theory. The proof consists of explicit construction of a
disk spanning each loop in H?"+1,

1 Introduction

The Heisenberg groups H?, H®, H7, ... are a sequence of nilpotent Lie groups that arise in geom-
etry in several ways. For example, H® is known to three-dimensional geometers as Nilgeometry,
and arises in the study of Seifert-fibered three-manifolds [14]. The H?"*! also appear in hyper-
bolic geometry: a horosphere in complex hyperbolic space CH™ is a copy of H?"~1 (see [7], [11]).
Thurston [3], without proof, and Gromov [9][10], outlining a proof, have stated that H°>, H7,...
satisfy quadratic isoperimetric inequalities (defined below). This paper provides a new and com-
plete proof of this theorem, by explicitly exhibiting spanning disks and estimating their areas. Our
main purpose in proving this theorem is to obtain isoperimetric inequalities for certain finitely
presented groups, in particular, for the discrete Heisenberg groups and for nonuniform lattices in
Isom (CH™). In a sense, we use elementary differential geometry to obtain results in the geometric
theory of discrete groups. Our inequalities for 32" *! (n > 1) contrast with the case of H3, which
satisfies a cubic (but no quadratic) isoperimetric inequality; see [3]. For more information about
isoperimetric inequalities for finitely presented groups, see [5], [6].

A Riemannian manifold M is said to satisfy the isoperimetric inequality f, where f is a
function from the positive real numbers to themselves, if any smooth closed curve in M of length
at most L bounds a disk in M of area at most f(L). One says that M satisfies a quadratic
isoperimetric inequality if f may be taken to be a quadratic polynomial, and one makes similar
statements for cubic bounds of f, etc.

It turns out that our problem may be reduced to a problem in symplectic geometry which
is interesting in its own right. Namely, we consider loops in R?", which we equip with both its
usual Euclidean metric and its usual symplectic form. The problem of finding spanning disks of
appropriate area in H?"*! reduces to the following problem in R?": given a loop v in R?", enclosing
zero symplectic area and having length L, does v bound an isotropic disk with Euclidean area of
order L?? The answer is yes if n > 1, as we prove in section 2.

Section 3 introduces the Heisenberg groups and explains the connections between them and
the symplectic geometry, and section 4 obtains the advertised quadratic isoperimetric inequality for
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H?7+1, Finally, section 5 offers applications of our results to complex and quaternionic hyperbolic
geometry and to geometric group theory; it also compares our techniques with those of Gromov
[10] and Lee [12].

The proofs are arranged so that a reader interested only in the existence of isotropic spanning
disks (with or without the area estimate) need read only a minimal amount.

The author is pleased to S. Gersten and J. Burillo for working through the paper in their
seminar and for suggesting improvements. This paper is derived from part of the author’s Ph.D.
thesis at U.C. Berkeley and the author would like to thank his advisor, A. Casson, for his suggestions
on the exposition.

2 Isotropic Disks in R?"

We consider R?" as both a symplectic and Euclidean space, with the orthonormal basis =1, y1, ...,
Tn,Yn, and the standard symplectic form w, defined by

w(z, yi) = —w(yi,xi) =1,

with all other pairings of basis vectors vanishing. (Recall that a symplectic form is a nondegenerate
antisymmetric bilinear form on a vector space.) As usual, we also consider R?" as a manifold and
w as a differential 2-form thereon. If a is a smooth closed path « : [0,1] — R?"”, we may choose a
smooth disk D spanning « and evaulate | pw- We call this quantity the symplectic area enclosed
by «; since w is exact, this area does not depend on the disk chosen.

We say that a smooth map from a manifold, f : M — R?", is isotropic if f*w = 0; in the
following constructions M will be the unit disk or a rectangle. Stokes’ theorem implies that two
closed loops joined by an isotropic homotopy enclose the same symplectic area.

The goal of this section is to prove theorem 2.3 below, and the strategy is to first prove two
lemmas that provide us with ‘legal moves’ on loops in R?”. That is, they provide a variety of
isotropic homotopies with small Euclidean areas. We will prove theorem 2.3 by weaving these
moves together.

Lemma 2.1. Suppose R*® = V; @ Vs, where Vi and Vs are symplectically orthogonal subspaces,
and that o : [0,1] — R2" is a smooth loop based at the origin, with a(s) = a;(s) + ax(s) for all s,
where the image of «; lies in V;. Then there is a smooth isotropic homotopy between o and the
loop obtained by first traversing o; and then as.

If Vi and V; are orthogonal (with respect to the Euclidean metric) and « has length L, then
the isotropic homotopy may be taken to have (Euclidean) area at most L?.

Proof: By reparameterizing and extending its domain, we may (and do) suppose that « is a
smooth map from R to R*" which vanishes except on [0, 1]. Consider the homotopy

[(s,t) =ai1(s+1t) + az(s),

where ¢ € [0,1] and s € [-1,1]. T'(s,0) is the restriction of a to [—1,1], and I'(s,1) is the loop
obtained by traversing first o; and then ay. We compute

T /3t = o, (s + 1)
O /0s = oy (s +t) + ah(s);

I is isotropic: w(AI'/ds, 0T /0t) = 0 because w is antisymmetric and because the o lie in sym-
plectically orthogonal subspaces. We estimate the area of the homotopy as follows. Writing X for
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[0,1] x [=1,1], we have
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In the last step the integrals are bounded by the lengths of a; and as, respectively, which are in
turn bounded by L. O

Lemma 2.2. Let o and 3 be two smooth paths in R?". If their images lie in symplectically
orthogonal subspaces and they are parameterized such that

w(a(s), o'(s)) = w(B(s), B'(s)), (2.1)

then there is a smooth isotropic homotopy between them. If o and 3 are closed paths, then this
may be taken to be a homotopy through closed paths.

If a has length L and there are constants A and B such that for all s we have ||3'(s)|| < ||&/(s)]|,
lla(s)]| < A and ||B(s)|| < B, then the homotopy may be taken to have (FEuclidean) area at most
(A+ B)rL.

Remark: The quantity on the left side of (2.1) may be interepreted geometrically as (twice)
the rate at which the family of segments joining 0 and «(s) sweeps out symplectic area. If « lies
in a symplectic plane then it may also be interpreted as the angular momentum (about the origin)
of a particle moving along «. Similar interpretations in terms of 8 describe the right hand side.

Proof: Define the homotopy
[(s,t) = a(s)cost + [(s)sint,

where ¢t € [0,7/2]. It is obvious that if o and (3 are loops then I is a homotopy through loops. We

have
oI'/ot = —a(s)sint + [(s) cost

Ol /ds = o/ (s) cost + [F'(s) sint.

To evaluate I'*w, one computes w(0I'/0s, dI'/0t), which vanishes, establishing that I" is isotropic.
To estimate the area of the homotopy under the conditions of the last claim of the theorem, we
observe

[T /ot|| <lla(s)|| + [B(s)| < A+ B
107/0s| <[l ()|l + [18"(s)I| < 2lle(s)]]-
Writing X for [0, 1] x [0, 7/2], we have

Area(T'(X)) < /X 18T /0| 8T /0s]|ds dt

< /X 2A+ B)(s) | ds dt

=(A+ B)rL.



Theorem 2.3. Let v : S' — R?" be a smooth loop enclosing zero symplectic area, and suppose
n > 1. Then there is a smooth isotropic map of the unit disk f : D — R?" such that f|0D = +.

If v has length L, then the spanning disk f(D) may be chosen to have Euclidean area at most
kL?, where k is a constant.

Remark: The proof below shows that k may be taken to be 1 + (2 4+ v/5).

Proof: 'The proof proceeds by applying a sequence of isotropic homotopies to ; their com-
position shrinks v to a point.

STEP 1: Consider v to be a closed path v = 7 : I — R?", and suppose that ~(0) = 0.
By lemma 2.1, 7¢ is homotopic by a smooth isotropic homotopy to a smooth curve v; which is a
composition of two loops, the first being the projection of g to the z1,y; plane and the second
the projection of g to the span of zo,ys, ..., Ty, Yp.

STEP 2: If a(s) = (x(s),y(s),0,0) is a smooth curve in R* then define 3(s) = (0,0, z(s), y(s)),
and apply lemma 2.2 to deduce that there is an isotropic homotopy carrying o to 8. Applying this
to the first of the two loops comprising v produces an isotropic homotopy between +; and a loop
2 lying entirely in the span of xa,ya, ..., Zn, Yn.

STEP 3: Define v3(s) = (L/2,h(s),0,...,0), where h(s) is defined by the conditions ~(0) =0
and

w(73(5),75(s)) = w(72(s),72(s))-

The latter condition is equivalent to h'(s) = 2w(y2(s),v4(s))/L. Since the symplectic area enclosed
by 72 is zero, we have h(1) = 0, so 73 is a closed path. Applying lemma 2.2 to 72 and 3 yields an
isotropic homotopy between them.

STEP 4: Steps 1 through 3 have provided an isotropic homotopy between our given loop
70 = ~v and the loop 73, which lies in a line of R?". As our last step, we contract the loop 3
to a point in this one-dimensional subspace by a linear (and obviously isotropic) homotopy. By
changing the parametrization of the homotopy parameter s, we may paste the four homotopies
together to obtain a smooth isotropic disk f : D — R?" bounding . This completes the proof of
the first part of the theorem.

To prove the second part, we must estimate the areas of the homotopies used above. By
lemma 2.1, the homotopy in step one has area at most L?, and we observe that y; consists of two
loops, each of length at most L. This implies that |71 (s)|| < L for all s. Lemma 2.2 then proves
that the second homotopy has area at most 7L2. We will also apply lemma 2.2 to the homotopy of
step three. Since ||vy2(s)|| < L/2 for all s, we have |h/(s)| < ||75(s)]|, which implies that the length
of 43 is at most 2L, and hence that |h(s)| < L and ||y3(t)|| < Lv/5/2. Since the length of 7o is
at most 2L, lemma 2.2 shows that the area of this homotopy is at most mL?(1 + v/5). Observing
that the fourth homotopy has zero area, we add all these areas together to obtain the advertised
bound. O

3 The Heisenberg Groups

For background on the Heisenberg groups, see [7]. The Heisenberg group H?"*+! is the connected
and simply connected Lie group with Lie algebra h??+1 which has a basis consisting of the 2n + 1
vectors o1, Y1, .., Tn,Yn, 2, and Lie bracket defined by the relations that [z;,y;] = z and that all
other pairings of basis elements vanish. The center 3 of h?*+! is the span of z, and we denote by
Z the center of the group H** 1. Let m: K+l — F(27+1/Z =2 R?" be the canonical projection
map.

We may equip H?"+! with a left-invariant Riemannian metric g by declaring the 2n + 1
basis vectors given above to be an orthonormal basis for h27*+!, and translating this inner product
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to other points of the group by (left) multiplication. This metric is not canonical, but in this
investigation, the choice of metric does not matter. When n > 1, theorem 4.1 below provides a
quadratic isoperimetric inequality for H?*"*! equipped with the metric g. Since any other (left
invariant) metric on H?"*! disagrees with g about lengths and areas by some uniformly bounded
amount, we will be able to conclude that 2"t satisfies a quadratic isoperimetric inequality when
equipped with any (left-invariant) Riemannian metric.

Two important notions are the vertical and horizontal subspaces at a point € H?"*1. The
vertical subspace V, is the set of vectors in T, H?"*! that are tangent to the coset of Z passing
through z. (Note that the left and right cosets of Z coincide.) V, is one-dimensional. We define
the horizontal subspace H, to be the orthogonal complement of V,, in T, H?**!; the distribution of
2n-dimensional horizontal subspaces is invariant under the action of (left) group multiplication. We
may use the horizontal subspaces to equip the central quotient R?" of H?"*! with a Riemannian
metric: if z € R??, then choose any representative Z for z in 32”1, and observe that the projection
7 establishes an isomorphism between H; and T,R?". Define the inner product on T,R?” via this
identification; this is independent of the choice of #, and yields a ‘quotient’ metric on R?". It is
not hard to see that this is the standard FEuclidean metric. We say that a vector in T, 3?"*? is
horizontal (resp. vertical) if it lies in H, (resp. V). If M is a manifold and f : M — H***1 s
smooth, then we say that f and f(M) are horizontal if every element of f,T'M is horizontal. (In
our applications, M will be an interval or a surface.)

We may define a symplectic form w on the vector space H; C h2"T! by identifying 3 with
R (by identifying z with 1 € R), and setting w(v,w) = [v,w] € 3 = R, for v,w € Hy;. We may
translate this structure to other points of H?*"*1 by (left) group multiplication, and then follow
the procedure above to equip the quotient R?™ with a symplectic structure, which we also call w.
It is easy to see that w is the standard symplectic form relative to the basis x1,y1,...,ZTn, Yn-

When equipped with both its Euclidean and symplectic structures, R?" encodes much infor-
mation about H?"*!, and the family of horizontal subspaces allows us to ‘lift’ objects in R?" to
objects in H?" 1. Namely, if o : [0,1] — R?" is a smooth curve and we select a point z € 71 (a(0)),
then there is a unique horizontal lift & : [0,1] — H?"*! having the properties that &(0) = = and
that mo a(t) = a(t) for all t € [0,1]. If a is a closed loop in R?"*, then & typically fails to be
a closed loop in H?"*!: the symplectic structure on R?" tells us the amount by which it fails to
close. The vertical distance between @(0) and @(1) is equal to the absolute value of the symplectic
area enclosed by the loop a in R?", and the sign of the symplectic area tells us which of &(0) and
a(1) is ‘above’ the other.

More generally, it is natural to ask whether can we find a horizontal lift of a map f : M — R2",
where M is some manifold. If M is simply connected, f : M — R?" is isotropic, x € M, and
T € 7~ Y(f(x)), then there is a unique horizontal map f: M — K21 with the properties that
f(x) = & and that for all y € M, wo f(y) = f(y). We will use this to build horizontal lifts of
the isotropic disks f : D — R2" obtained in theorem 2.3. The lift f may be defined as follows: if
y € M, choose a smooth path « : [0,1] — M from z to y. Define f(y) to be the endpoint f/g/a(l)

of the horizontal lift f o « satisfying f o «(0) = . This definition does not depend on the choice
of path a because if § is another path in M from x to ¥y, then a and § together bound a disk in
M, and so f o« and f o 3 together bound a disk in R?" with zero symplectic > area. Hence, any
horizontal lift of the boundary of this disk is a closed loop, which is to say that fo «(1) = f o 3(1).
We note the simple yet important fact that if o is a horizontal path in 3?"*!, then its length
measured with respect to ¢ is the same as the Euclidean length of its projection in R?". Similarly,
the area of a horizontal surface in H?"*! is the same as the Euclidean area of its image in R?".
These properties hold because 7 carries each horizontal space H, isometrically to Tﬂ(m)RQ".



4 An Isoperimetric Inequality for H?7+!

Theorem 4.1. The Heisenberg groups H*"+! with n > 1 satisfy a quadratic isoperimetric in-
equality.

Remarks: The proof below show that if a loop has length L, then it spans a disk of area less
than (14 k)L? + 47'/2(k + 1/3)L3/2 4 (47k + 2) L, where k is the constant of theorem 2.3. The
proof uses the following lemmas, whose proofs appear after the proof of the theorem.

Lemma 4.2. A path in H*"*! (n > 1) of length L is homotopic (rel endpoints) to a path which
is the composition of two paths, each of length at most L, the first being horizontal and the second
being vertical; such a homotopy may be chosen with area at most L.

Lemma 4.3. A vertical path in H?*"™! (n > 1) of length L is homotopic (rel endpoints) to a
horizontal path of length 2(wL)'/?, by a homotopy of area < 2L + 4x'/2L3/? /3.

Proof of theorem 4.1: First suppose that « is a smooth horizontal loop of length L. Then
7oy in R?" also has length L, and since one of its horizontal lifts is the closed loop 7, it encloses
zero symplectic area. By theorem 2.3, m o v bounds a smooth isotropic disk D with area at most
kL?. A horizontal lift of this isotropic disk has the same area as D, and one of the horizontal lifts
of D bounds «. This completes the proof in the case that ~ is horizontal.

Now suppose that v is an arbitrary smooth loop of length L in H{?"*+!. Using lemma 4.2 and
then applying lemma 4.3 in the obvious way, we apply a homotopy carrying 7 to a horizontal loop 7’
of length at most L+2+v/7L; the area of this homotopy may be taken to be < L? —|—2L—|—47r1/2L3/2/3.
Applying the horizontal case to 7/, and adding together the areas of the homotopies used, we find
that v spans a disk of area at most the bound given in the remark. O

The geometric image to keep in mind for the proofs of the two lemmas is that if § is a simple
smooth path in R?" then 7 1(6) is locally isometric to R?, having two orthogonal foliations. These
are given by the horizontal lifts of § and the preimages under 7w of the points of §.

Proof of lemma 4.2: Fix an isometry ¢ : R — Z that carries 0 € R to the identity element
of Z; ¢ is also a group homomorphism. Let ~ : [0,1] — H?"*! be a path and define vy; to be
the horizontal lift of m o v with 71(0) = 7(0). Consider the map f : [0,1] x R — H?*"T! given by
f(s,t) = 71(s)o(t), juxtaposition denoting multiplication in H?"*1. All computations will take
place in [0, 1] X R, so we establish some facts regarding it. We define a horizontal line to be a set of
the form [0,1] x {z} (z € R), and a vertical line to be a set of the form {z} x R (z € [0,1]). With
respect to the pullback “metric” f*g, vertical and horizontal lines are orthogonal, and vertical line
segments have their natural lengths. (Note that f*g may fail to be a metric by being degenerate
at some points.) Length along horizontal lines depends on |71/, but all we will need about the
behavior of f*g on horizontal lines is that the total length of any horizontal line is the length of
~1, which is bounded by L.

Define (31,3 : [0,1] — [0,1] x R to be the unique maps such that fo 3y =~ and fo 3 =1.
We have (1(s) = (s,0) and ((s) = (s,u(s)) for some function u : [0, 1] — R; this function measures
the difference between 7(s) and the horizontal path ~1(s). Let B be the homotopy which pushes 3
along fibers to 5,. Explicitly, B(s,t) = (s, (1 —t)u(s)), for t € [0,1]. The length of the track s of B
is just u(s), which is obviously bounded by the arc length of ([0, s]), which is in turn bounded by
L. Since |u(s)| < L for all s, we deduce that the area of B is at most L -length(3;) < L2. Observe
that B leaves (5(0) fixed, while moving 3(1) toward (1(1); by reparameterizing B, we may regard
it as a homotopy rel endpoints between 5 and the path obtained by first traversing 8; and then
the vertical arc (of length < L) from 31 (1) to 8(1). The homotopy promised in the lemma is f o B.
Lengths and areas of objects in [0, 1] x R, measured with respect to f*g, coincide with the lengths
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and areas of their images under f, measured with respect to g. This delivers the promised bounds
for length and area. U

Proof of lemma 4.3 The homotopy we will construct lies entirely in H3. For each t € [0,0)
let S¢(0) (for & € [0,27]) be the path in R? that begins at 0 and travels counterclockwise with
constant speed around the circle with center (—¢,0) and radius t. As ¢ varies between 0 and any
given T > 0, the S; sweep out a disk in R? and the S; sweep out a disk D(T) in H3, where S;
denotes the horizontal lift of S; beginning at the identity of 3. For all ¢, S;(27) lies over 0 € R?,
so the path Sy(27) (with ¢t € [0,7]) is a vertical path. Setting 7' = (L/m)'/? we see that D(T)
provides a homotopy (rel endpoints) between a vertical path of length L and the horizontal path
St of length 2(mL)'/2,

It remains to bound the area of D(T"). We may parameterize the homotopy by

I':[0,7] x [0,27] — H*
L(t,0) = S(0).

We observe [|0L /90| = ||0S;/06]| = ||0S; /00| = t. We write (9T /t)(t,0) = h(t,0) + v(t, ) where
h(t,8) and v(t,8) are horizontal and vertical vectors at I'(¢,0), respectively. We have ||h(t,8)| =
|(0S;/0t)(t, 0)]]. Since S;(0) = (—t,0) + (¢,0) cos € + (0,t) sin O we see that ||h(t,0)| < 2 for all ¢
and 0. We bound ||v(t, )| by observing that v(¢, ) is given by the infinitesimal area of the region
bounded by the arcs S;([0,0]) and S;y4:(]0,0]) and the infinitesimal segment joining S¢(0) and
Sirat(0). Formally, letting A(t,0) be the area of o I'([0,¢] x [0,6]), we observe that

lo(t,0)[| = [[(2A/8t)(2, 0)]]-

The right hand side is obviously bounded by |(0A/0t)(t,2m)| = 2xt. Our bounds on the norms
of h and v show that ||0T'/0t|| < 2 + 2xt. Finally, writing X for [0,7] x [0, 27], we have

Area(T(X)) < /X |18T/80|| ||or /ot|| dt df

< / {2 + 2t)dt dO
X

=27(T? + 2773 /3)
— 9L 4 4x'/213/% /3,

5 Applications and Remarks

Theorem 4.1 has several applications in the field of geometric group theory. Since F5, H7,...
satisfy a quadratic isoperimetric inequality, so does any group which acts cocompactly, discretely,
and isometrically on one of them (see [2]). The main example, the discrete Heisenberg group
ﬂ-(%"“, has generators x1,...,Z,, Y1, .., Yn, 2 and relations asserting that [z;,y;] = z and that all
other pairs of generators commute. fJ-(%”H is a cocompact discrete subgroup of H?**! and we
may conclude that this group satisfies a quadratic isoperimetric inequality when n > 1. For more
information about isoperimetric inequalities for finitely presented groups, see [5], [6]. It is easy
to see that with respect to the presentation above, H3 is isometrically embedded in J-C%”'H; it is
also true that H? is isometrically embedded in H??*!. It is surprising that efficient spanning of
loops in the isometrically embedded H? requires disks that do not lie in H2. Finally, by proving
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theorem 4.1, we have justified the claim in [3] that the groups 9—(%”"’1 for n > 1 provide examples
of finitely presented groups that satisfy quadratic isoperimetric inequalities while not admitting
automatic structures.

Another important reason to study the Heisenberg groups is that they occur as horospheres in
complex hyperbolic space CH™. Another family of nilpotent Lie groups, the quaternionic Heisen-
berg groups HH*"~!, appear as the horospheres in quaternionic hyperbolic space HH™ (see [11]),
and if n > 4 then the techniques of §§ 2—4 can be applied directly to yield quadratic isoperimetric
inequalities for them. In the case n = 4, the techniques can also be applied, but more care is
required. If a group G acts (meaning that it acts discretely and isometrically) on CH™ or HH™
with noncompact finite volume quotient, then each of its cusp groups acts cocompactly on a copy
of 32"~1 or HH*"~1. In his work on relatively hyperbolic groups, Farb [4] has shown that under
these conditions, G and its cusp groups satisfy isoperimetric inequalities of the same degrees. This
proves

Theorem 5.1. A group G which acts on CH™ (n > 2) or HH™ (n > 3) with noncompact finite-
volume quotient satisfies a quadratic (but no subquadratic) isoperimetric inequality.

Remark: The optimality follows from work of Gromov [8, p. 104] and Olshanskii [13], that
any group satisfying a subquadratic isoperimetric inequality is word hyperbolic. Since a word
hyperbolic group cannot contain a subgroup isomorphic to Z?, and GG contains Heisenberg groups
and hence copies of Z?, G cannot satisfy a subquadratic inequality. If a group acts as in the
theorem on real hyperbolic space H™ then it satisfies a quadratic inequality (and a linear one if
n = 1), and if on CH? it satisfies a cubic inequality. Again these are optimal. The only hyperbolic
spaces for which such precise results are not yet known are HH?, HH?, and the hyperbolic plane
OH? defined over the alternative field of octaves. (See [11] for a description of these spaces.)

We hope the reader will find merit in the following comments upon the proofs. The heart of the
proof of theorem 4.1 is contained in its first paragraph. It is known that H?"*+! is quasi-isometric to
the metric space %é’;jnlot, in which the distance between two points is the infimum of the lengths of
horizontal paths joining them. Since quasi-isometric spaces tend to satisfy isoperimetric inequalities
of the same degrees (see, e.g., [1]), one might hope to deduce the isoperimetric inequality for J?"+1
from this, but it’s not clear what ‘area’ means in J{%anlot.

We began this work by trying to fill loops in a Cayley graph for fJ-C%”H, working combinatori-
ally. After a while, it became clear that two words in the generators x;,y; commute exactly when
the parallelogram they span in the central quotient Z2" of fJ-(%"'H encloses zero symplectic area.
Then it seemed more natural to work with polygonal paths in R?”, and it was in this setting that
the proof was completed. It is something of a bonus that the technique applies to smooth loops,
and in fact is phrased most naturally in terms of them. Most of our constructions have analogues
in U—C%’H'l. The process used in the proof of lemma 4.2 corresponds to the operation on words in
U—C%”'H of commuting each z all the way to the far end. Lemma 4.3 performs in our smooth setting
the same sort of service as the combinatorial operation of replacing each z by :vlyl:cl_lyl_ 1 The
proof of lemma 2.1 uses a smooth version of the process “commute all the x1’s and y;’s to the
beginning of a word.” Only lemma 2.2 seems to have no neat combinatorial analogue. In fact, even
if the given loops are polygonal, it produces a homotopy between them that isn’t polygonal: the
tracks of the homotopy are elliptical arcs. Anyone wishing to devise a combinatorial algorithm for
contracting loops in H%”'H might first describe how to span a polygonal loop in R?" (that encloses
zero symplectic area) with a polygonal isotropic disk of appropriately small area.

Gromov [10] has developed his arguments of [9] to give another proof of theorem 4.1. He
derives the result from his theorem 3.5D, the “disk extension theorem”, a version of which we
reproduce here.



Theorem 5.2. If V is a simply connected compact Riemannian contact manifold of dimension
2n 4+ 1 > 5 then there exists C' > 0 such that the following holds. For every Lipschitz function
fo : SY — V there exists a Lipschitz extension f : D?> — V of f, such that the Lipschitz constant
of f is bounded by C' times that of fy.

(A contact (2n + 1)-manifold is a manifold equipped with a hyperplane field locally equivalent to
that of H?"*+!, and the term Lipschitz refers to the Carnot metric on V induced by the Riemannian
metric and the hyperplane distribution. A smooth map is called horizontal if its derivative takes
values in the distribution, and smooth horizontal maps from S! are automatically Lipschitz.)

This immediately implies that a horizontal loop v in V of length L spans a horizontal disk
of area < C?L? /47, which yields a quadratic isoperimetric inequality for horizontal loops in V.
Despite the hypothesis that V' be compact, one may apply the theorem to prove our theorem 4.1.
One takes V to be a simply connected compact manifold-with-boundary neighborhood of 1 €
H2n+1 If 4 is any horizontal loop in H?"*+! of length L then let o’ be the image of 7 under the
“dilation” x; +— txz;, y; — ty;, z — t2z for t small enough so that 4/ C V. Because the dilation
preserves the field of horizontal hyperplanes, 4 is horizontal and has length tL. By the theorem,
it spans a horizontal disk of area < C?(tL)?/4w. Then by taking the image of the disk under
the inverse of the dilation we see that v spans a disk of area < C2L?/4w. This argument does
not address the issue of non-horizontal loops in 327!, but one is generally not interested in such
things when thinking about Carnot geometry. In any case, to prove that any loop bounds a disk
of Riemannian area quadratic in the loop’s length, one can reduce to the horizontal case and apply
the argument above. The reduction to the horizontal case is easy (say, our lemmas 4.2 and 4.3.)

Gromov’s arguments for theorem 5.2 are part of a systematic study of Lipschitz maps to
Carnot-Carathéodory manifolds (a generalization of a contact manifold). Among other things,
he treats the approximation of continuous functions by horizontal Lipschitz functions, which can
be used to provide the reduction to the case of horizontal loops. He also treats the problem of
extending a piecewise smooth and horizontal map satisfying bounds on its higher derivatives by
functions satisfying similar conditions.

Our methods differ from Gromov’s primarily in that the explicit homotopies we employ use
the global structure of 32" *! rather than just the local contact structure. (Our homotopies may
wander far from the original curves.) The proofs of lemmas 4.2 and 4.3 could be rewritten to show
that for any curve v in H?"*! there exists a horizontal curve of approximately the same length
within (say) distance 1 of 7. However, the key to our construction, lemma 2.2, seems to require a
“global homotopy”. As a consequence, it seems unlikely that the argument could be modified to
work for general Carnot-Carathéodory manifolds. On the other hand, our explicit approach has
the advantage of directness and provides a uniform isoperimetric inequality for all the 32"+ with
n > 1.

Yng-Ing Lee [12] has also proven a version of theorem 2.3. Namely, that there is a constant
¢ > 0 such that if y is a smoothly embedded loop of length L in R* such that (i) the center of mass
of v is the origin, (ii) v encloses zero symplectic area, and (iii) ~ satisfies condition (H) below,
then v bounds a smoothly embedded disk in R* of area < cL?. We say that v satisfies condition
(H) if there is a smooth homotopy through smoothly embedded loops 7:, each enclosing zero
symplectic area, that carries v = 71 to 79 = C, a standard circle of circumference L in the (z1, z2)-
plane. Below, we compare this with her original definition. Her construction is completely explicit
(given the homotopy) and has the advantage of yielding an embedded spanning disk. However, her
method only works for smoothly embedded loops satisfying (H). This is not a serious drawback:
she sketches an argument that any loop enclosing zero symplectic area may be approximated by a
loop satisfying (H).

Her argument is more in the style of pure symplectic geometry than ours: it proceeds by real-
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izing the given homotopy as the track of v under the flow of a suitable time-dependent Hamiltonian
vector field V;. Reversing the flow carries the obvious disk D spanning C' to a disk bounded by ~.
Since the flow of a Hamiltonian vector field is a symplectomorphism, this yields an isotropic disk
spanned by 7. The key to her argmument is that one can choose the vector fields V; in such a way
that they and their first derivatives with respect to the z; and y; are all bounded by some universal
constant. This lets one estimate how much the disk D is distorted as it flows along the V;, and thus
yields a bound on the area of the disk spanning . She chooses the V; by explicitly writing down
a time-dependent Hamiltonian function, and then checking that is satisfies the various required
properties.

We close by indicating why our version of condition(H) implies hers. The additional criteria
she imposes are that all the ; have the same length and that there be § > 0 such that there is
an embedded d-tubular neighborhood of ~; for all ¢. If v satisfies our version of (H), with the
length of 4 being L;, then replacing each +; with the scaled loop L%'yt, we recover her first extra
condition. The existence of the tubular neighborhoods for some ¢ follows from the facts that each
~¢ is smoothly embedded and that there is a uniform bound on the extrinsic curvature of the paths
v¢- (The latter claim follows from the compactness of the homotopy.)
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