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1. INTRODUCTION

The purpose of this note is to study the geometry of certain remarkable infinite
arrangements of hyperplanes in complex hyperbolic space which we call orthogo-
nal arrangements: whenever two hyperplanes meet, they meet at right angles. A
natural example of such an arrangement appears in [3]; see also [2]. The concrete
theorem that we prove here is that the fundamental group of the complement of
an orthogonal arrangement has a presentation of a certain sort. As an application
of this theorem we prove that the fundamental group of the quotient of the com-
plement of an orthogonal arrangement by a lattice in PU(n, 1) is not a lattice in
any Lie group with finitely many connected components. One special case of this
result is that the fundamental group of the moduli space of smooth cubic surfaces is
not a lattice in any Lie group with finitely many components. This last result was
the motivation for the present note, but we think that the geometry of orthogonal
arrangements is of independent interest.

To state our results, let B™ denote complex hyperbolic n-space, which can be
described concretely as either the unit ball in C™ with its Bergmann metric, or as the
set of lines in C"™! on which the hermitian form h(z) = —|z|? + |21|>+ - -+ |2n|? is
negative definite, with its unique (up to constant scaling factor) PU(n, 1)-invariant
metric. Let A = {H;, Ha, H3, ...} be a non-empty locally finite collection of totally
geodesic complex hyperplanes in B™. We call A a complex hyperbolic arrangement
and write H for HyUH,UH3U- - -. We are interested in 71 (B" —H), the fundamental
group of the complement. It is clear that if .4 is infinite (the case of interest here),
this group is not finitely generated. (For instance, its abelianization Hq,(B™ —H,Z)
is the free abelian group on the set A.) If n = 1, H is a discrete subset of B! and
m1(B1 —H) is a free group, and we have nothing further to say in this case. We
thus assume throughout the paper that n > 2. We say that A is an orthogonal
arrangement if any two distinct H;’s are either orthogonal or disjoint. The main
purpose of this note is to prove the following theorem:

Theorem 1.1. Let A be an orthogonal complex hyperbolic arrangement. Then the
group w1 (B™ — H) has a presentation (y1,72,...|r1,72,...) where each relator ry,
has the form ry = ['yi,l,—j'yjli_jl], where lij is a word in Y1, ..., Ymax{i,j}—1-

At this point the conclusion of the theorem may seem completely technical. We
hope that a look at the proof will convince the reader that the conclusion reflects
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some beautiful complex hyperbolic geometry. We will use Theorem 1.1 to prove
the following theorem.

Theorem 1.2. Suppose an orthogonal hyperplane arrangement in B™ is preserved
by a lattice T C PU(n,1), n > 1. Then the orbifold fundamental group 7™ (T'\
(B™—"H)) is not a lattice in any Lie group with finitely many connected components.

This allows us to solve the problem which motivated this work, concerning the
moduli space of cubic surfaces in CP3. Following [3], let Cq denote the space of
smooth cubic forms in 4 variables, let PCy denote its image in the projective space
of all cubic forms in 4 variables, and let My = PGL(4,C)\PCy denote the moduli
space of smooth cubic surfaces.

Corollary 1.3. Neither w1 (PCq) nor n¢™(My) is a lattice in any Lie group with
finitely many connected components.

The corollary follows from Theorem 1.2 because the main result of [3] is that
there is an orbifold isomorphism My = I'\(B* — H) where I is a certain lattice
in U(4,1) and H is a certain I-invariant orthogonal arrangement in B*. Namely,
let £ denote the ring of Eisenstein integers (the integers Z[/1] in Q(v/—3)), let h
be the above Hermitian form in n + 1 variables, let A be the arrangement {v
v € EML h(v) = 1}, and let ‘H be the union of the hyperplanes. It is easy to
see (see Lemma 7.29 of [3]) that A is an orthogonal arrangement. Let I'" denote
the lattice PU(h,€&) in PU(n,1), which obviously preserves H. Then I'\B" is a
quasi-projective variety and a complex analytic orbifold, and in the case n = 4 we
have the orbifold isomorphism My = T'\(B* — H).

2. PROOF OF THEOREM 1.1

Let A be an orthogonal arrangement, let H denote the union of the hyperplanes
in A, and choose the basepoint pg € B"—H. We will now show that pg can be chosen
to satisfy two genericity conditions: (G1) for any two distinct nonempty sub-balls X
and Y of B™, each of which is an intersection of members of A, d(pg, X) # d(po,Y),
and (G2) for any ¢ # j, the minimal geodesic from py to H; does not meet Hj. (We
write d for the complex hyperbolic distance.) It is clear that condition (G1) holds
on the complement of a countable collection of equidistant hypersurfaces, which
are closed real analytic subvarieties of real codimension one. The same holds for
(G2), namely, let V;; denote the union of all geodesic rays from H; which are
perpendicular to H; and which meet H;. Then V; ; is a locally closed real analytic
subvariety of real codimension one, whose closure is the nowhere dense semi-analytic
set of geodesics perpendicular to H; and which meet the closure of H; in the closed
unit ball B”. Thus the complement of Ui’j Vi; is not empty. We denote d(po, H;)
by d;, and label the hyperplanes H;, Ho,--- € A according to increasing distance
from pg, so that di < da < ---. We will keep this convention throughout the paper.

Now choose generators {7;} for m1(B™ — H) as follows: for each i, let o; be the
minimal geodesic segment from pg to H;, let D; be the complex hyperbolic line
which contains o;, and note that D; intersects H; orthogonally at a single point p;.
Choose a geodesic subsegment \; of o; that starts at py and ends at a point ¢; very
close to p; but before reaching p;. Let ¢; be the loop in D; based at ¢; and running
positively around the circle in D; centered at p; that passes through ¢;. Finally
let v; = NiciA; !, From (G2) it is clear that if ¢; is chosen close enough to p; then
v C B™ —H.
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Let f: B" — R be the function f(z) = d(po,x)*. Then f has a unique critical
point on B™ (a minimum, namely pg), its restriction to each H; has a unique
critical point on H; (also a minimum, the point p;, defined above), for each non-
empty intersection H; N Hj,i # j has a unique critical point (also a minimum,
which we denote by p;;), and so on for its restriction to any non-empty intersection
H; N---NH;,. Condition (G1) assures us that distinct critical points correspond to
different values of f. The stratified Morse theory of Goresky and MacPherson, see
Theorem 10.8 of [5], implies that B™ —H is homotopy equivalent to a CW complex
with one zero-cell, with one-cells in one to one correspondence with the H;, two-cells
in one to one correspondence with the non-empty intersections H; N H, three-cells
in one to one correspondence with non-empty intersections H; N H; N Hy, etc.

Since the fundamental group of B™ —H is isomorphic to the fundamental group
of the two-skeleton of this complex, we must look in more detail at the one- and
two-cells of this complex. First, when passing the critical value f(p;) correspoding
to the unique critical point p; of f|H;, the change in homotopy type of the two
sublevel sets is described by attaching a one-cell. Namely, the larger sublevel set
is obtained from the smaller by attaching an interval that completes the loop ¢;
defined above. From this it is clear that the loops +; generate m (B™ — H").

Now we must look at the two-cells. Suppose that H; N H; # () and that i # j.
When crossing the critical level f(p;;) corresponding to the unique critical point
pij of f|m,nm;, the bigger sublevel set is obtained from the smaller by attaching a
two-cell that can be visualized as follows. Let g;; be a point in the smaller sublevel
set very close to p;; and let e; and e; be loops in the smaller sublevel set based at g;;
and encircling H; and Hj respectively. Then the larger sublevel set is homotopically
equivalent to the smaller union a two cell, which can be visualized as a square whose
boundary is attached to the union of e; and e; by the commutator map, so that e;
and e; commute in the larger sublevel set.

Since the loops e; and e; are freely homotopic to the loops v; and 7, it is clear
that the relators are commutativity between 7; and some conjugate of v;, as in
the first half of the assertion of Theorem 1.1. It remains to prove the more subtle
assertion on the expression of I;; as a word in the 7’s.

To this end, for the remainder of this section, fix a pair 7,j with ¢ # j so that
H; N Hj # (). Observe that the points po,p;, pij, p; form the vertices of a totally
real quadrilateral @), two of whose sides are the geodesic segments o; and o; the
remaining two sides are the geodesics joining p; and p; to p;; (which lie in H;,
respectively H;). Moreover () is a Lambert quadrilateral: the angles at p;, pj, pi;
are all right angles, as in Figure 1. See Lemma 3.2.14 of [4] for details (after an easy
reduction to the case n = 2). Tt is easy to see that that @ and H; (repectively H;)
meet everywhere at right angles, and that @ is foliated by the geodesic segments
in @ perpendicular to the side H; N @Q, which we call vertical segments (there are
respectively horizontal segments, which we will not need); see Figure 1.

Lemma 2.1. Suppose that k # i,j and that the hyperplane Hj meets either H; or
Hj. Then H,NQ = 0.

Proof. Suppose, say, that Hy N H; # (). We will first show that H, N(Q is a vertical
segment. Note that Hy and H; intersect at right angles, and that Hy, is foliated by
totally geodesic discs (complex lines) perpendicular to H; at the points of H; N Hy.
Call these discs vertical discs. Suppose that Hy N Q # 0, and let ¢ € H, N Q. Then
¢ is in a unique vertical segment and a unique vertical disc, and it is easy to see
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that the segment is contained in the disc. Thus H; N (@ is a vertical segment. Since
Q@ is foliated by these vertical segments, the segment Hj N ¢ must intersect the
side o; of Q opposite to H; N Q; see Figure 1. Thus Hy N A; # 0, contradicting
assumption (G2) of the choice of pg. Thus we must have Hy N @Q = @, and the
lemma is proved. [l

Lemma 2.2. Suppose that k # 4,5 and H, N Q # 0. Then Hi N Q consists of a
single point in the interior of QQ, and hence the intersection is transverse.

Proof. Tt is clear that Hj, cannot intersect the boundary of Q: by the choice (G2) of
po it cannot intersect the edges o; or o; of @, and by the previous lemma it cannot
intersect the edges H; N Q, H; N Q. If H; N Q # (0, then since the intersection is
totally geodesic in (), it must be either a point or the intersection of () with a full
geodesic in the real 2-ball containing ). Since Hj cannot intersect the boundary
of @), the intersection must be an interior point, and the proof is complete. [l

Lemma 2.3. Suppose that k # ,j and H, N Q # 0. Then d(po, Hr N Q) <
max{di,dj}.

Proof. Observe that the quadrilateral @ lies in a unique totally geodesic complex
hyperbolic plane B?> C B™, so by intersecting all these hyperplanes with this B>
we may reduce to the case of lines in B2. Consider this B? concretely as the unit
ball {|z|? + |w|* < 1} C C?, with p;; at the origin, H; and H; as the intersection of
B? with the z and w-axes respectively, and with the quadrilateral Q lying in the
quadrant

{(z,y) 2,y e R, 2 +9y*> <1, >0, y >0}

of the real subspace BZ. The complex hyperbolic geometry of B? restricts to the
Klein model of real hyperbolic geometry of B2, so geodesics in BZ are real line
segments and convex sets are the Euclidean convex sets.

We suppose without loss of generality that ¢ < j. The ball B(pg,d;) N Q is a
convex subset of () C B2 which is bounded by the geodesic segment o, a convex
curve C' from p; to some point on the z-axis, a segment along the z-axis, and the
segment ;. Let L be the line joining the endpoints of C. Then z +y < 1 on L
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since this inequality holds at both endpoints. Thus the same inequality holds on
C.

Now let H; N Q = {(z0,%0)}. We must show that d(po, (z0,%0)) < d;. The line
Hj. has an equation az + fw = 1. By Lemma 2.1, Hj cannot meet either axis,
thus max{|«l,|8|} < 1. Since axg + Byo = 1, by the duality between the [; and
loo norms we must have that zg + yo > 1. Therefore (zg,yo) lies in the connected
component of @@ — C' containing pg, so (zo,yo) is interior to the d;-ball about po,
and the lemma is proven. O

We can now finish the proof of Theorem 1.1; we continue to assume i < j.
Recall that the change in topology in crossing the critical level f(p;;) is described
by attaching a two cell to the union of the two loops e;, e; as described above, and
this introduces the relation [e;, ;] = 1 in the fundamental group based at the point
qij- Now the point ¢;; can be chosen to lie in the quadrilateral Q). Let A;; and Aj;
be arcs in the interior of (), close to the boundary of (), joining ¢; and ¢; to ¢;;.
Observe that e; is homotopic to )\i_jlci/\ij and e; is homotopic to )\j_ilcj Aji, as loops
based at ¢;; and homotopies relative to ¢;;. Thus the relation [e;, e;] = 1 at ¢;; can
be rewritten as a relation at po by changing the basepoint using the path A; A,
and it reads:

["/ialij"/jl;jl] =1 Where lij = AZ)\U)\;LlA;l
Observe that I;; is approximately the boundary of the quadrilateral @), thus I;; is
homotopic to I ...l where [1,...,[, are loops in @) based pg encircling the points
QN Hg,...,Q N Hg,, where Hy,,...,Hy, are the hyperplanes that have non-
empty intersection with the interior of (. By Lemma 2.3, all these intersections
lie at distance < d; from pg, so each of ly,...,l, is a word in ~1,...,7;—1, and
Theorem 1.1 is proven.

The only consequence of Theorem 1.1 we will use is the following corollary. For
each m =1,2,..., we define H,,, = Hy U---U H,,, and observe that the inclusion
B"™ —H C B™ — H,, induces a surjection 71 (B" — H) — 71 (B"™ — H).

Corollary 2.4. Let v € m(B™ —H), v # 1. Then there exists an m such that ~
has non-trivial image in w1 (B"™ — Hy).
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Proof. Theorem 1.1 clearly implies that for each m the map that sends each gen-
erator 7i,...,%vm of m(B™ — H,,) to the same element of 71(B™ — H) defines
a group homorphism m(B™ — H,,) — m1(B"™ — H) which splits the surjection
71 (B"—H) — m(B"—H,,) and has image (71, . - ., Ym ), the subgroup of 71 (B"—H)
generated by 71, . ..,7m. Thus the subgroup (71, ...,7m) maps isomorphically onto
m1(B™ — Hy). Given v # 1 as in the statement of the corollary, choose an m so
that v € (v1,...,7m), and the corollary follows. O

Remark. It is easy to see that the relations [v;, lijﬂ/jl;jl] of Theorem 1.1 in general
cannot be simplified to [v;,7;] by choosing the basepoint pg so that all the loops ;;
are homotopically trivial. We show this for the arrangement A associated to the
Eisenstein integers that we defined in the introduction. To see this for n = 2, let us
follow the conventions of the proof of Lemma 2.3, so that H; and H; are the z and
w axes respectively. Choose a third hyperplane Hy to have equation z + w = 1,
and note that this is also in the collection H. Choose a point (z1,w;) € 0B2 so
that 1 is in the interior of parallelogram in C spanned by z; and w;. Observe
that this is equivalent to saying that the ideal Lambert quadrilateral {sz; + tw; :
0 < s,t < 1} meets the hyperplane Hy = {z + w = 1} in the interior of the
quadrilateral. By the density of Q(v/—3)-rational points in B?, we may assume
that (z1,w1) has coordinates in Q(v/—3), for instance we may take (z1,w;) =
(9 +3v/=3)/16, (11 — 34/—3)/16). Then there exists a neighborhood N of (z1,w1)
so that for all py = (20, w9) € N N B2, 1 is in the interior of the parallelogram
spanned by zp and wy. Thus for all py € N N B2, the Lambert quadrilateral
Q = {s20 + twp : 0 < s,¢t < 1} with acute angle at py meets the hyperplane Hy.
Since every neighborhood N N B2 of a cusp point in dB? contains a fundamental
domain for I's, it follows that for any choice of basepoint py there are hyperplanes
H;, H; so that the loop [;; is not homotopically trivial. Suitable modifications of
this argument show the necessity of the /;; for any n > 2.
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3. PROOF OF THEOREM 1.2

In this section we write K for 71 (B"™ — H) and ® for n$"™>(I'\(B™ — H). Observe
that these groups fit into the exact sequence

1-K—-®—-1—>1,

which gives rise to a natural homomorphism I' — Out(K), where Out denotes the
group of outer automorphisms. Theorem 1.2 follows from well known theorems on
lattices in semi-simple groups, together with the following lemmas.

Lemma 3.1. Forn > 1, the centralizer in ® of each generator ~; € K contains a
non-abelian free group.

Proof. Let M; C B™ — H; be the boundary of a tubular neighborhood of the
hyperplane H;, and suppose that M, contains the point ¢; of §2. Let I'; denote
the subgroup of I' that preserves H;. Then +; is freely homotopic to the loop
c; of §2 based at ¢;, which is clearly central in the orbifold fundamental group
79" (T;\ (M; — H)). Since this latter group surjects (to 7$™(T';\ M;) and hence) to
T';, which is a lattice in PU(n —1,1), it contains a non-abelian free group if n > 1.
It then follows that the centralizer of -; in ® contains a non-abelian free group if
n > 1. ([l

Lemma 3.2. Let H # {1} be a subgroup of K which is normal in ®. Then

1. H contains a non-abelian free group.
2. The image of the natural map I' — Out(H) contains elements of infinite
order.

Proof. Let u € H and pu # id. We will produce v € H so that u, v generate a non-
abelian free group. By Corollary 2.4, there exists an m so that p has non-trivial
image in m (B"™ — H,,). Choose a hyperbolic element of I" neither of whose limit
points in 0B™ lie in any of the boundaries 9H; C dB™ for i = 1,...,m. This can be
done because I' is a lattice. Sufficiently high powers of this transformation map H,,
far away from itself; choose one such power and denote it by ¢. Then B™ can be
written as the union of two topological n-sub-balls intersecting along a topological
(n—1)-sub-ball, where one of the balls contains H,, and the other contains ¢(H, ).
It follows that m1(B™ — (Hm U ¢(Hy,)) is the free product of the groups K, =
71(B" — H,y) and K, = 71(B" — ¢(H.m)). Since ¢ € T', ¢(H,,) C H. Thus there
is a natural surjection K — K, * K,,,. Since H is normal in 7$"*(I'\(B™ — H)),
the group I' acts by outer automorphisms on H, and there must be an element
v € K which maps to the image of ¢(u) in K, * K. Thus H contains the free
product of the cyclic groups generated by p and v, which is a free non-abelian
group since p and v must be of infinite order, say by the result of [1] that B" — H
is aspherical. (One may avoid using [1] by first applying the above construction to
show that H has an element of infinite order, and then applying the construction
to this element.) This proves the first part of the lemma. Iterating this reasoning,
it is clear that ¢ has infinite order in Out(H), so the second part of the lemma is
proved. O

It is now easy to prove Theorem 1.2. First we show that the first part of
Lemma 3.2 precludes ® from being a lattice in a connected Lie group G with
non-trivial solvable radical R. Otherwise, in the exact sequence of Lie groups

1-R—-G—G/R—1
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there would be two possibilities: (1) The image of ® in G/R is discrete. In this
case, by Theorem 1.13 of [7], RN ® would be a lattice in R, thus R N ® would be
a non-trivial normal solvable subgroup of ®, which is precluded by the first part of
Lemma 3.2. (2) The image of ® in G/R is not discrete. In this case, by a theorem of
Auslander, Theorem 8.24 of [7], the identity component of the closure of its image
is a solvable group. The intersection of & with the pre-image in G of this group is
then a non-trivial normal solvable subgroup of ®, which we have already excluded.
We can then exclude ® from being a lattice in a Lie group G with finitely many
components and with identity component having non-trivial radical by observing
that Lemma 3.2 also holds for subgroups of finite index in ®.

It remains only to exclude the possibility that ® is a lattice in a semisimple
group G, again easily reduced to a connected G. First, from the the fact that T" is
not virtually a product and from the second part of Lemma 3.2 (which also holds
for subgroups of finite index of ®), it is clear that ® is not virtually a product.
Thus if it were a lattice in G, it would be an irreducible one. If G had real rank
at least 2, by a deep theorem of Margulis [6] any normal subgroup would have to
be either of finite index or central (note that this holds even if G is not linear),
which is precluded by the infinite-index non-central subgroup K. If G were a rank
1 group, linear or not, the centralizer of any non-central element would be virtually
nilpotent. Since the v; are clearly not central, this contradicts Lemma 3.1 (Note
this is the only point where the hypothesis n > 1 is used, and that Theorem 1.2
does not hold for n = 1). This completes the proof of Theorem 1.2.
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