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Abstract. Some real moduli spaces can be presented as real hy-
perbolic space modulo a non-arithmetic group. The whole moduli
space is made from some incommensurable arithmetic pieces, in
the spirit of the construction of Gromov and Piatetski-Shapiro.

1. Introduction

The purpose of this paper is to explain how some real moduli spaces
have non-arithmetic uniformizations, in the sense that they are homeo-
morphic to real hyperbolic space modulo the action of a non-arithmetic
group. The space is assembled, in a natural way, from various pieces,
each of which can be uniformized by an arithmetic group. One can
check that the pieces are not all commensurable. The uniformization
of the moduli space can be seen as an orbifold version of the construc-
tion of non-arithmetic groups by Gromov and Piatetski-Shapiro [6].
In other words, some real moduli spaces give very natural and con-
crete examples of the Gromov-Piatetski-Shapiro construction. We first
found this phenomenom in the moduli space of real cubic surfaces [2],
[3]. Since some of the details there are quite technical, in this paper
we outline an easier situation, namely the moduli of real polynomials
in two variables, homogeneous of degree six.

The first question is why study polynomials of degree six, rather than
some other degree. First of all, we want a space of complex polynomials
so that their moduli space is unifomized by complex hyperbolic space.
Equivalently, we want situations where the moduli space of points (pos-
sibly with weights) on the Riemann sphere is complex hyperbolic, in
the sense that it is the unit ball Bn in Cn modulo the action of a lat-
tice Γ of biholomorphic automorphisms of Bn. If the number of points
is at least five, there are only finitely many possibilities and they are
listed in [5], [7], [11]. The number of points must be at most 12, and
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if the weights are all equal, the number of points (assumed to be at
least 5) must be 5, 6, 8 or 12. In these equal weight cases the moduli
space is always of the form Γ\Bn where Γ is an arithmetic subgroup of
the group of bihilomorphic automorphisms of Bn. We chose 6 because
the arithmetic group acting on the ball is the simplest, in the sense
that it is the group of units of a unimodular hermitian form over a
discrete subring of C, namely the ring of Eisenstein integers (integers
in Q(

√
−3)). (For 5 points discreteness of the ring fails; for 8 and 12

points unimodularity fails). Also important for us is the fact that the
moduli space of six points is embedded (as the discriminant) in the
moduli space of cubic surfaces. The reason is that a cubic surface with
an ordinary double point can be represented as the blow-up of CP 2 at
6 points lying on a conic.

Whenever a moduli space of complex varieties of a given type is
complex hyperbolic, it seems reasonable to expect that the moduli
space of the real varieties of the same type is real hyperbolic. What we
will see in this example is that this is indeed the case, but not in an
obvious way. The moduli space of real polynomials with distinct roots
consists of 4 connected components, corresponding to the 4 possible
configurations of real and complex conjugate pairs of roots: all roots
being real, 4 roots being real and one complex conjugate pair, etc.
We will see that each component is uniformized by a totally geodesic
real hyperbolic subspace of the ball. More precisely, there is an anti-
holomorphic involution (briefly: anti-involution) of the ball, so that
its fixed point set H3

i , modulo its stabilizer Γi in Γ, parametrizes the
union of this component with the adjoining polynomials with double
roots. But there is no single anti-involution of the ball whose fixed
point set modulo its stabilizer in Γ parametrizes the union of the four
components.

What turns out to be true is that the moduli space of real polyno-
mials with at most double roots is homeomorphic to a real hyperbolic
orbifold ΓR\H3 for some lattice ΓR acting on real hyperbolic space H3.
This orbifold contains as open sub-orbifolds the four moduli spaces
of polynomials with distinct roots, and it assembles the four distinct
Γi\H3

i into a single hyperbolic orbifold. The group ΓR is not arithmetic,
while the group Γ acting on B3, as well as the groups Γi acting on H3,
are arithmetic. One can easily check that the groups Γi are not all
commensurable (in fact, they fall into two distinct commensurability
classes), so it is in this sense that ΓR is a group in the spirit of Gromov
and Piatetski-Shapiro. The fact that ΓR is not arithmetic implies that
there is no single anti-involution of B3, respecting Γ, whose fixed point
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set modulo its stabilizer in Γ parametrizes all the polynomials. By ex-
amining the construction a bit more closely, one can see that ΓR admits
homomorphisms to Γ and that there are piecewise-geodesic equivariant
maps of H3 to B3.

This paper is based on the third author’s lecture at the conference
in Discrete Groups and Geometric Structures with Applications, held
at Oostende, Belgium, May 31 to June 3, 2005. He is grateful to
the organizers and participants for the stimulating atmosphere of the
conference.

2. Moduli of complex polynomials

We review briefly the fact, from [5], that the moduli space of 6 points
on CP 1 is complex hyperbolic. Let P denote the space of complex poly-
nomials f(x, y) in two variables, homogeneous of degree 6. Write Psm

for the subspace of polynomials with distinct roots (smooth zero set)
and let Pst denote the subspace of polynomials with roots of multi-
plicity at most two (stable in the sense of geometric invariant theory
for the action of SL(2, C) on the projective space of P). To state the
uniformization theorem for this space, let B3 be the unit ball in C3,
and let h(z) = |z0|2 − |z1|2 − |z2|2 − |z3|2 be the standard hermitian
form of signature (1, 3) on C4. Recall that PU(h) = PU(1, 3) is the
the group of biholomorphic automorphisms of B3, by identifying B3

with the subspace of CP 3 of positive lines for h. Let ω = e2πi/3 and
let E = Z[ω], the ring of integers in Q(

√
−3). Let Γ = PU(h, E). For

each vector v ∈ E4 ⊂ C4 with h(v) = −1, its orthogonal complement
defines a hyperplane in CP 3 that cuts B3 in a totally geodesic hyper-
plane (or 2-dimensional sub-ball). We write H ⊂ B3 for the union of
this countable collection of hyperplanes.

Theorem 2.1. There is an isomorphism of analytic spaces between

Pst/GL(2, C) and Γ\B3. The subspaces Psm/GL(2, C) and Γ\(B3−H)
correspond under this isomorphism. Moreover, Γ is generated by the

complex reflections of order 6 in the hyperplanes of H.

We sketch some of the reasoning behind the proof of this theorem.
For more details see [5]. The main point is that, to each polynomial
f ∈ Psm one can assign the Riemann surface Xf given by the equation
z3 = f(x, y) (in the weighted projective plane of (x : y : z) where
x, y have weight one and z has weight two). This Riemann surface
Xf is a cyclic three-fold cover of CP 1 branched over the zeros of f .
The cyclic covering group is generated by σ : Xf → Xf defined by
σ(x, y, z) = (x, y, ωz). One easily checks that the genus of Xf is 4,
hence H1(Xf , Z) is a free abelian group of rank 8 with an action of
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the cyclic group Z/3 generated by σ which fixes no non-zero element
(since H1(CP 1) = 0). Thus H1(Xf , Z) ∼= E4, a free E-module of rank
4, and H1(Xf , C) splits as a direct sum of two eigenspaces H1

ω and
H1

ω̄ (since there is no non-zero eigenvector for 1) for the action of σ.
There is a second direct sum decomposition of H1(Xf , C) = H1,0⊕H0,1

into holomorphic and anti-holomorphic forms (Hodge decomposition).
While the Hodge decomposition splits H1(Xf , C) into two spaces of the
same dimension, it does not do the same to the eigenspaces. In fact it
turns out that in the decompostion

H1

ω̄ = H1,0
ω̄ ⊕ H0,1

ω̄

the first summand is one-dimensional, and spanned by the differential

(2.1)
ydx − xdy

f 1/3

(which is a multi-valued differential on the CP 1 of (x : y) and is eas-
ily checked to define a holomorphic differential on the branched cover
Xf ), while the second summand is three-dimensional. Moreover, the
hermitian form

h(α, β) = i
√

3

∫

α ∧ β̄

is E-valued and unimodular on the projection of H1(Xf , Z) to H1
ω̄, it is

positive definite on H1,0
ω̄ and negative definite on H0,1

ω̄ . We will write
E1,3 for this module with this standard hermitian form. The family
of Riemann surfaces Xf assembles into a fibration over Psm, its first
cohomology gives a local system of E modules with fiber E1,3, and we
get a reprentation from π1(Psm) to the group of isometries of E1,3.

If we let P̃sm denote the covering space of Psm corresponding to the
kernel of the resulting projective monodromy representation π1(Psm) →
PU(1, 3, E), then there is a well-defined period map P̃sm → B3 obtained

by assigning to a point f̃ ∈ P̃sm lying over f ∈ Psm the subspace
H1,0(Xf )ω̄. Passing to the covering space is needed in order to trivialize
the local system of projective spaces of the H1

ω̄, and hence to have a
fixed space in which all the lines H1,0(Xf )ω̄ lie. Since these are positive

lines for h, this map takes values in B3, hence we get a map P̃sm → B3,
which by general principles is holomorphic. Explicity, this is the map
given by the periods of the hypergeometric integral associated to (2.1).

This map is not surjective, in fact it misses the subspace H ⊂ B3.
But the monodromy around a generic polynomial in the discriminant,
namely a polynomial with a single double root, is a complex reflection
of order 6 about a component hyperplane of H, see [5]. This can also
be seen as the monodromy of the singularity z3 = x2, as the Riemann
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surface Xf becomes singular, which can be seen to be of order 6 by
the general considerations of [9]. What this eventually means is that
the period map extends to a complex manifold P̃st which is a branched
cover of Pst, which is branched cyclically of order 6 over the generic
point of the discriminant (and with group (Z/6)k, k = 1, 2, 3 over
the part of the discriminant with k double roots). The resulting map
P̃st → B3 is constant on GL(2, C)-orbits and gives a Γ-equivariant iso-
morphism P̃st/GL(2, C) → B3 and the resulting isomorphisms stated
in the theorem. Finally, we remark that the group Γ is actually the
full group PU(1, 3, E), see, say, Lemma 7.12 of [1] for a proof.

3. Anti-involutions corresponding to real polynomials

Let us see what happens over the real numbers. Let us write PR,
PR

sm, PR

st for the spaces of polynomials f with real coefficients in the
corresponding spaces of complex polynomials defined in the last section.
It is clear that the space PR

sm has 4 connected components, which we
denote

PR

sm = PR

0 ∪ PR

1 ∪ PR

2 ∪ PR

3 ,

so that the space PR

i consists of real polynomials with distinct roots
and i complex conjugate pairs of complex roots.

If f ∈ PR

i , then the anti-involution κ(x, y, z) = (x̄, ȳ, z̄) leaves Xf

invariant, so it defines an anti-involution κ : Xf → Xf which satis-
fies κσ = σ−1κ. Thus the induced homorphism κ∗ : H1(Xf , Z) →
H1(Xf , Z) is an anti-involution of the E-module structure. The conju-
gacy class of this anti-involution of the E-module E1,3 is constant as f
varies in a fixed component of PR

i .

Theorem 3.1. Let κ0, . . . , κ3 be the anti-involutions of E1,3 defined by

κ0(z0, z1, z2, z3) = (z̄0, z̄1, z̄2, z̄3)

κ1(z0, z1, z2, z3) = (z̄0, z̄1, z̄2,−z̄3)

κ2(z0, z1, z2, z3) = (z̄0, z̄1,−z̄2,−z̄3)

κ3(z0, z1, z2, z3) = (z̄0,−z̄1,−z̄2,−z̄3)

(3.1)

Then κi is a representative of the projective conjugacy class of anti-

involutions induced on E1,3 by κ and f ∈ PR

i .

Proof. Choose disjoint closed disks D1, D2, D3 in CP 1, each invariant
under complex conjugation and containing the real axis as a diameter.
Choose a polynomial f ∈ PR

i , so that each disk Dj contains exactly two
roots, say pj, qj, of f , and which lie on a diameter of Dj, thus either
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on the real axis or on a diameter perpendicular to the real axis. Let C
denote the closure of CP 1−(D1∪D2∪D3). Let D̃j, C̃ denote their pre-
images in Xf . We want to see how the E-module H1(Xf , Z) decomposes
in terms of this decomposition of Xf . It is easier to visualize the
isomorphic E-module H1(Xf , Z), by Poincaré duality.

It is easy to check that the pre-image in Xf of the boundary of each
Dj is a circle, hence from the Mayer-Vietoris sequence we see that the

E-module H1(D̃j, Z) is a direct summand. Moreover, it is a free E-
module of rank one. A generator for this E-module is the following
cycle: let cj be an oriented segment from pj to qj, and let c̃j be an

oriented segment in D̃j that lifts this segment. Then c̃j − σc̃j is a

cycle in D̃j and is a generator of the E-module H1(D̃j, Z). The other
generators are its images under σ: σc̃j − σ−1c̃j, σ−1c̃j − c̃j, and the

negatives of these three generators. In fact, D̃j is homeomorphic to a
torus minus a disk.

Now let’s look at the action of κ on these rank one modules. If both
roots in Dj are real, then κ(c̃j) = c̃j, and using the identity κσ = σ−1κ,
we see that κ(σc̃j −σ−1c̃j) = −(σc̃j −σ−1c̃j). Thus there is a generator
x of this E-module so that κ(x) = −x, in other words, the action of κ
on this E-module is isomorphic to the action of z → −z̄ on E .

If the two roots in Dj are interchanged by complex conjugation,
then κ(c̃j) = −c̃j, and the same reasoning as before gives that κ(σc̃j −
σ−1c̃j) = (σc̃j − σ−1c̃j). Thus this E module has a generator x which
is fixed by κ, hence it is isomorphic to E with the usual conjugation
z → z̄.

Next, the complementary set C defined above can be visualized as
the complement of the interior of one disk, say D1, centered at infinity,
with the interior of the two other disks D2, D3 removed. As such, it
can be visualized as a disk with diameter the real axis and with small
disks centered at two points p, q removed. The surface C̃ is a torus
with three disks removed, and the image of H1(C̃, Z) in H1(Xf , Z) is
a direct summand, and it is a free E module on a generator somewhat
like c̃−σc̃ above. It has two segments that project to a segment on the
real axis, they join two of the boundary circles of C̃, and are completed
to a cycle by adding suitable arcs of these boundary circles. From the
fact that these two segments lie over the real axis one can derive that κ
acts on this summand as in the summands corresponding to a Dj with
two real roots, namely as z → −z̄.

From disjointness of support considerations one sees that E-module
H1(Xf , Z) decomposes as the orthogonal direct sum of the four one-
dimensional E submodules just defined. Unimodularity forces each
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summand to be spanned by a vector x with h(x) = ±1. It turns out
(this requires more thought) that for the summands correspoding to
the Dj we have h(x) = −1, while for the summand corresponding to C
we have h(x) = 1. Thus these summands make the hermitian form h
standard. Our derivation of the action of κ in these coordinates shows
that it acts by the negative of the formulas (3.1). Since κ and −κ have
the same projective action, in other words, they act in the same way
on the ball B3, this proves the theorem.

¤

From this theorem and Theorem 2.1, it is not hard to derive that
each PR

i /GL(2, R) is isomorphic to Γi\(H3
i −H), where H3

i denotes the
fixed-point set of κi in B3, which is a totally geodesic real hyperbolic 3-
space, and where Γi denotes its stabilizer in Γ. Moreover, it is not hard
to check that Γi = PO(qi, Z) where qi is the quadratic form obtained
by restricting the hermitian form h to the Z-sublattice of E1,3 fixed by
κi. Since the fixed lattice of z → z̄ in E is Z ⊂ E , and the fixed lattice
of z → −z̄ in E is

√
−3 Z ⊂ E , the fixed lattice of κi is a direct sum of

4 − i copies of Z and i copies of
√
−3 Z, and restricting the hermitian

form we obtain quadratic forms which are diagonal with one 1, and
then −1 or −3 as the remaining diagonal entries. In summary, we get

Theorem 3.2. The space PR

i /GL(2, R) is isomorphic to Γi\(H3
i −H),

where Γi = PO(qi, Z) and qi is the integral quadratic form given by

q0(x0, . . . , x3) = x2

0 − x2

1 − x2

2 − x2

3

q1(x0, . . . , x3) = x2

0 − x2

1 − x2

2 − 3x2

3

q2(x0, . . . , x3) = x2

0 − x2

1 − 3x2

2 − 3x2

3

q3(x0, . . . , x3) = x2

0 − 3x2

1 − 3x2

2 − 3x2

3 .

Note that the groups Γi fall into at least two commensurability
classes, since the number of variables is even and the determinants
of the forms fall into two classes in Q∗/(Q∗)2, namely the determinants
of q0 and q2 are in the square class of 1, while the determinants of q1

and q3 are in the square class of 3, see Corollary 2.7 of [6]. It is not
hard to show, using either invariants of quadratic forms or explicit con-
structions, that Γ0 and Γ2 are commensurable, and that Γ1 and Γ3 are
commensurable. Thus the Γi fall into exactly two commensurability
classes.
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4. The real moduli space is hyperbolic

Let us now consider the moduli space of stable real polynomials,
namely PR

st/GL(2, R). The group GL(2, R) acts properly with finite
isotropy groups on PR

st, thus PR/GL(2, R) is an orbifold. We state a
uniformization theorem for this orbifold.

Theorem 4.1. There is a lattice ΓR acting on H3 and a map of topo-

logical orbifolds ΓR\H3 → PR/GL(2, R) which is a homeomorphism

of the underlying spaces. The orbifold ΓR\H3 contains the orbifolds

Γi\(H3 − H) as open sub-orbifolds, and the map restricts to the iso-

morphisms of Theorem 3.2 on each of these open sub-orbifolds.

Remark. It is not claimed that the map ΓR\H3 → PR/GL(2, R) is an
isomorphism of orbifolds. In fact, it is not. It fails to be so on the
codimension two part of the discriminant. See [4] for a discussion of
the precise relation between the two orbifold structures.

Proof. We briefly sketch the proof of this theorem. Let P̃R

st denote the
pre-image of PR

st in P̃st. The first step is to show that P̃R

st/GL(2, R)
immerses in B3 = P̃st (in the sense that the period map gives a local em-
bedding), with image the union of a countable collection of totally geo-
desic real hyperbolic subspaces. Let K denote the space P̃R

st/GL(2, R)
with the path metric induced from this immersion. There is a map
Γ\K → PR

st/GL(2, R) which is a homeomorphism.
The next step is to prove that the metric space Γ\K has the structure

of a real hyperbolic orbifold. This is achieved by providing local orb-
ifold charts for Γ\K. Namely, for each x ∈ K, we look at its stabilizer
Γx in Γ, take a suitable Γx-invariant neighborhood Ux of x, and then
find an open subset Vx ⊂ H3 and a group Gx of isometries of H3 leav-
ing Vx invariant, so that Γx\Ux is isometric to Gx\Vx. These orbifold
charts are found by case by case analysis, depending on how singular
K is at x. If x is a regular point of K, then it has a Γx-invariant neigh-
borhood Ux isometric to an open set in H3, and Ux → Γx\Ux provides
an orbifold chart. We next look at the generic singular point x of K.
Its stabilizer Γx = Z/6 and goes over into a complex reflection of order
6 in B3. The point x goes to a point that lies on 6 different geodesic
hyperbolic 3-spaces H3 that interesect in a common H2, A Γx-invariant
neighborhood Ux is metrically the union of six open sets W0, . . . ,W5

in H3 glued together along an open set W of an H2. A generator of
Γx = Z/6 maps Wj to Wj+2; its third power reflects each Wj in the
common W . Thus a fundamental domain is the union of “half” of one
even-numbered Wj with “half” of one odd-numbered Wk, joined along
their common W . This is isometric to an open set Vx ⊂ H3, and Vx is
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a manifold chart at x, in other words, our desired orbifold is smooth
at this point. Non-generic singular points of K require more care, but
it is easy to classify them, and give orbifold charts in each case.

It is easy to check that this orbifold is complete. Thus the uniformiza-
tion theorem [10] gives the existence of a discrete group ΓR acting on
H3 with ΓR\H3 = Γ\K. By the construction of the charts, it contains
the orbifolds Γi\(H3 −H) as open sub-orbifolds. Finally, one needs to
check (but we do not do it here) that one indeed gets the asserted map
of orbifolds.

¤

5. Non-arithmeticity

One way to prove that ΓR is not arithmetic is to prove that it is
essentially a Coxeter group (it contains a Coxeter subgroup of index
2), derive its Coxeter diagram, and then apply Vinberg’s arithmetic-
ity criterion [12]. Equivalently, one could, from the Coxeter diagram,
derive a faithful representation of ΓR as matrices with coefficients in
Z[
√

3] and then apply the arithmeticity criterion of [5]. This approach
is somewhat involved. See [4] for details of how to prove that ΓR has a
Coxeter sub-group of index two and how to derive its Coxeter diagram.

Instead, we look at a two-dimensional subspace of H2 ⊂ H3 whose
stabilizer in ΓR is a lattice, and prove that this lattice in H2 is not
arithmetic. This immediately implies that ΓR is not arithmetic. Since
it is easier to visualize fundamental domains in two dimensions, it is
simpler to prove non-arithmeticity of ΓR this way.

To this end, let’s fix a real point ∞ ∈ CP 1 and define subspaces
P∞ ⊂ Pst and PR

∞ ⊂ PR

st to be the subspaces of polynomials with a
double root at ∞ (and of course all other roots have multiplicity at
most two). Let G ⊂ GL(2, C) denote the stabilizer of ∞, and let GR

denote its intersection with GL(2, R). The moduli space P∞/G was
uniformized by the unit ball B2 by Picard in [8], in one of the papers
in which he started complex hyperbolic uniformization in dimensions
greater than one. (To be strictly accurate, in this paper Picard uni-
formizes the branched cover corresponding to ordered points.) Picard’s
uniformization is the restriction of the Deligne-Mostow uniformization
we use in this paper to an appropiate subspace. Namely, pick one
irreducible component of the preimage of P∞ in the branched cover
P̃st → Pst and denote it by P̃∞. Then the period map used in the
proof of Theorem 2.1 maps P̃∞/G isomorphically onto a totally geo-
desic sub-ball B2 ⊂ B3, namely one of the irreducible components of
the collection of hyperplanes H ⊂ B3. This hyperplane is orthogonal
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to a vector v ∈ E1,3 with h(v) = −1. The sublattice of E1,3 orthogonal
to v is an E1,2, hence the Eisenstein uniformization that Picard finds
in [8].

The space PR

∞ has three connected components PR

∞,i, for i = 0, 1, 2.
Arguing much as in the proof of Theorem 3.2 it is not hard to see
that PR

∞,i/G
R = Γ∞,i\(H2

i − H) for a totally geodesic H2
i and where

Γ∞,i = PO(q∞,i, Z) and q∞,i is given by

q0(x0, x1, x2) = x2

0 − x2

1 − x2

2

q1(x0, x1, x2) = x2

0 − x2

1 − 3x2

2

q2(x0, x1, x2) = x2

0 − 3x2

1 − 3x2

2 ,

(5.1)

thus the same discussion one dimension lower. Similarly, a careful look
at the proof of Theorem 4.1 shows that PR

∞/GR = ΓR

∞\H2 for some
subgroup ΓR

∞ ⊂ ΓR acting on a totally geodesic H2 ⊂ H3. The equality
sign is interpreted as in Theorem 4.1, namely a map of orbifolds from
left to right that induces a homeomorphism of the underlying spaces.
This orbifold contains the Γ∞,i\(H2

i −H) as open sub-orbifolds.
It is easy to use Vinberg’s algorithm [13] to find fundamental domains

for the Γ∞,i. One finds that all three groups are Coxeter groups. The
fundamental domain of Γ∞,0 is a (2, 4,∞)-triangle, the fundamental
domain of Γ∞,1 is a quadrilateral with three right angles and one vertex
at infinity, and that of Γ∞,2 it is a (2, 4, 6)-triangle. Thus Γ∞,2 is co-
compact while the others are not.

One starts the computation using integral vectors to define the sides
of the fundamental domains. To compare the forms (5.1), it is easiest to
go to Z[

√
3], since over this ring the three forms can be made standard:

−x2
0 + x2

1 + x2
2. One can then present each fundamental domain in the

Klein model associated to the standard form as the convex hull of
points in the unit disk with coordinates in Q(

√
3). After possibly some

motions of the domains to make them fit next to each other as they do
in the orbifold ΓR

∞\H2, the result is as shown in Figure 1.
In Figure 1, Pi is the fundamental domain of Γ∞,i and the whole

quadrilateral is the fundamental domain for ΓR

∞. The group ΓR

∞ is not
a Coxeter group, It is generated by the reflections RA and RB in the
sides A,B of the figure, and by the translation T (parabolic transfor-
mation) that fixes the point (−1, 0) at infinity and takes the side C to
the side D. Since clearly TRA = RBT , the transformations T and RA

suffice to generate the group. The sides C and D lie in the discrimi-
nant, while the sides A and B do not. This quadrilateral has piecewise
geodesic maps to the complex hyperbolic plane B2, with each Pi going
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into a totally geodesic H2. (From this it is possible to construct homo-
morphisms from ΓR to PU(1, 2, E) and piecewise-geodesic equivariant
maps from H2 to B2. The fact that ΓR

∞ is not arithmetic implies that no
equivariant totally geodesic embedding is possible.) This quadrilateral
has finite area, so ΓR

∞ is a lattice in PO(2, 1).
It is easy to check that, in the coordinates x0, x1, x2 that make the

forms (5.1) standard, these transformations are given by the matrices

T =





3 +
√

3 2 +
√

3 1 +
√

3

−2 −
√

3 −1 −
√

3 −1 −
√

3

1 +
√

3 1 +
√

3 1





and

RA =





1 0 0
0 0 1
0 1 0





thus the lattice ΓR

∞ ⊂ PO(1, 2, Z[
√

3]). We can now apply the arith-
meticity criterion of Corollary 12.2.8 of [5], using for G the connected
component of PO(1, 2) = SO(1, 2), for G the algebraic group SO of
the standard form above, F = Q(

√
3), and the lattice ΓR

∞ ∩ G ⊂ G.
We need to check that the field generated by the traces of the matrices
Ad γ is Q(

√
3). It suffices to exhibit a transformation γ in the group so

that Tr Ad γ /∈ Q. Let γ = (TRA)2 (squaring to get into the identity
component G). One easily computes Tr Ad γ = 18 + 8

√
3 /∈ Q. Thus

there is a non-trivial Galois automorphism
√

3 → −
√

3, and the group
of real points of the algebraic group obtained by Galois conjugating
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the defining equations is again the non-compact group PO(1, 2). This
shows, by Corollary 12.2.8 of [5], that ΓR

∞ is not arithmetic.
It may be instructive to look at the different pieces of this diagram.

The groups associated to each Pi are actually defined over Q, since
they came from the integral quadratic forms (5.1), and one can see
this from the diagram: a fundamental domain for the Galois conjugate
group is obtained by taking the convex hull of the Galois conjugates of
the vertices of each polygon. One sees easily that this process, applied
to each Pi, yields a congruent polygon, hence the traces do not change,
hence the field generated by the traces is Q. But the same reasoning
does not apply to the whole quadrilateral, and in fact the field of traces
is larger than Q.
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