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I explained the ideas and coincidences which led me to conjecture in [2] that a group
closely related to the monster simple group is got from the orbifold fundamental
group of a certain 13-dimensional complex-analytic variety by adjoining a certain
relation.

Conway conjectured [6] that a group he called the bimonster is generated by 16
involutions satisfying certain braid and commutation relations (the ones specified
by the Y555 diagram), together with one extra relation w10 = 1. The bimonster
is (M ×M):2, where M is the monster simple group. (Conway was working with
the bimonster rather than the monster because it made working with a subgroup
1
2 (S5×S12) of M more convenient.) Ivanov [8] and Norton [9] proved this. I found
the Y555 diagram appearing in my work in complex hyperbolic reflection groups
[1], so naturally I wondered if there was a connection. For me, it appeared because
one of my reflection groups contains 16 triflections (order 3 complex reflections)
satisfying exactly the same commutation and braid relations.

How can one compare two groups, similar except with generators of different
orders? One way is to find a larger group, with generators of infinite order, of
which both groups are quotients. My reflection group approach suggested such
a group. Call my group Γ; it acts on the complex 13-ball B13. Write H for the
union of the mirrors (fixed-point sets) of the triflections, and define X = B13/Γ
and X0 = (B13−H)/Γ. Essentially by construction, B13 is the covering space of X
which is universal among all those having ramification of degree 3 along ∆ = H/Γ
and no other ramification. A way to express this is that Γ is got from π1(X0) by
demanding that a loop around ∆ have order 3. (Remark: π1 here means orbifold
π1.) If we instead demand that such a loop has order 2, then we get a group which
satisfies all the relations of the bimonster, except perhaps the w10 relation. So I
conjectured that this quotient actually is the bimonster.

Implicit in the last few sentences is the fact that π1(X0) has 16 generators that
satisfy the braid and commutator relations of the Y555 diagram. One may find the
generators by picking a suitable point p of the ball and taking certain paths based
at p. Each of these travels toward one of 16 nearby mirrors, travels 1/3 of the
way around it, and then travels backwards along the translate of the first part of
the path. Basak has recently established [5] that these loops do indeed satisfy the
braid and commutation relations. It remains open whether they generate π1(X0),
and we don’t know what other relations might be present in π1(X0). It is known
that the 16 triflections in Γ do generate Γ; see [4] and [3].

In fact, Basak found that there are 26 mirrors closest to p, so it’s natural to
adjoin the 10 extra generators to our 16, and it turns out that these 26 satisfy
the braid and commutation relations of the incidence graph of the points and
lines of P 2(F3). Exactly the same thing happens in the bimonster! Conway’s 16
involutions extend to 26, satisfying these same commutation and braid relations.
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A model for the whole conjecture is the largest of the Deligne-Mostow ball
quotients [7], which uniformizes the moduli space of unordered 12-tuples in CP 1.
One replaces B13 by B9, our Γ by a discrete subgroup ΓDM of U(9, 1) generated
by triflections, and defines XDM , XDM

0 ,HDM ,∆DM as above. Then π1(XDM
0 ) is

the spherical braid group on 12 strands, and a loop around ∆DM is one of the
standard generators. Killing its cube reduces π1(XDM

0 ) to ΓDM , while killing its
square reduces it to S12. In fact, this example is embedded in our situation, and
the S12 corresponds to the factor of the S12 × S5 mentioned at the beginning.

This also suggests that X may be a moduli space of some sort of algebra-
geometric objects. Whatever that type of objects is, it would have some sort of
notion of marking, for which the monodromy group on markings would be the
bimonster. The analogy in the Deligne-Mostow case is that an unordered 12-
tuple admits a notion of marking for which the monodromy group is S12—which
it certainly does, namely an ordering of the points. Another suggestive moduli
connection is that the 10-dimensional subvariety of X corresponding to the Y551

diagram is the moduli space of cubic threefolds.
There are some more consistency checks on the conjecture, notably that w20 = 1

in Γ; please refer to [2], [4] and [5] for more details.
I close with one thing that is not-well-enough known: in the setting of complex

triflection groups, the A4 Dynkin diagram should always make one pay attention.
The reason is that it plays the same role as E8 does in the usual setting of Coxeter
groups. If you take 4 triflections satisfying the braid and commutation relations of
the A4 diagram, write G for the group generated and α for a “root” defining one of
the triflections, then the G-translates of α span a copy of the E8 lattice (equipped
with a module structure over Z[ 3

√
1]). You can see three A4’s in the Y555 diagram,

and two in the Y550 = A11 diagram, the latter being the one relevant to ΓDM .
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