Identifying Models of the Octave Projective Plane

Daniel Allcock
15 August 1995

allcock@math.berkeley.edu

Department of Mathematics,
University of California,
Berkeley, CA 94720.

1991 mathematics subject classification: 51A35 (17C40)

Published in Geometriae Dedicata 65(1997) 215-217.

Abstract.

We provide a convenient identification between two models of the projective plane over the alternative field of octaves: Aslaksen's coordinate approach and the classic approach via Jordan algebras. We do this by modifying a 1949 lemma of P. Jordan.

The Octave Plane

The projective plane $\mathcal{O}P^2$ over the alternative field \mathcal{O} of octaves (also called Cayley numbers) may be viewed from several perspectives. Two particularly attractive models are the elegant coordinatization due to H. Aslaksen using 'restricted homogeneous coordinates' [1], and the model developed extensively by H. Freudenthal, in which the points of $\mathcal{O}P^2$ are identified with a set of idempotents in \mathcal{J} , a certain Jordan algebra [2]. What is missing is a convenient means to pass between these two languages. This paper makes the observation that a lemma due to P. Jordan [3], when suitably modified, yields a beautiful identification. Jordan's paper seems to have received little attention, despite being the first paper linking \mathcal{J} and $\mathcal{O}P^2$.

Briefly, here are the models. The points of Aslaksen's plane are the nonzero triples (x_1, x_2, x_3) of octaves with at least one real element, modulo the relation that two such triples are equivalent if they differ by left multiplication by an element of $\mathbb O$. Lines may be defined as follows. Declare two points to be *orthogonal* if we have $x_1\bar{y}_1 + x_2\bar{y}_2 + x_3\bar{y}_3 = 0$ when we choose representative triples (x_i) , (y_i) for the points, with at least 2 of the sets $\{x_i, y_i\}$ (i = 1, 2, 3) containing a real number. (This choice may always be made.) The lines of the geometry are the sets orthogonal to the points. Clever computations in [1] show that these conditions do actually yield a projective plane. (*Note:* Aslaksen required one coordinate to be unity, but this is inessential; he also defined the same set of lines without reference to the "innner product" above. His lines and ours coincide.)

The exceptional Jordan algebra \mathcal{J} is the (real) algebra of 3×3 Hermitian matrices with elements in \mathcal{O} , under the multiplication defined by A*B=(AB+BA)/2. The points of $\mathcal{O}P^2$ are the trace 1 idempotents, and two such idempotents are called *orthogonal* if their Jordan product vanishes. Again, the lines of the geometry are the point-sets orthogonal to points. It is convenient to identify an idempotent of \mathcal{J} with the vector subspace of \mathcal{J} consisting of its real scalar multiples.

Generalizing a construction of P. Jordan, we define a map from Aslaksen's plane to \mathcal{J} by $(x_1, x_2, x_3) \mapsto e$ where e is the matrix defined by $(e_{ij}) = \bar{x}_i x_j$. This is well-defined up to real scalar multiplication, and it is easy to check that e is a trace 1 idempotent exactly when $|x_1|^2 + |x_2|^2 + |x_3|^2 = 1$.

Theorem. The map defined above is an isomorphism from Aslaksen's model of OP^2 to Freudenthal's.

Proof: It is observed above that the map is well-defined, and it is trivial to check that it is injective. To show that it is surjective, one need only find suitable (x_1, x_2, x_3) , given a trace 1

idempotent in \mathcal{J} , which is easy. The heart of the theorem is proving that the notions of orthogonality between points of $\mathcal{O}P^2$ coincide. We accomplish this in the following lemma, which is a modification of Jordan's Hilfsatz 2. We indicate a proof (Jordan didn't) because the calculation is very tedious if approached incorrectly.

Lemma. Let (x_1, x_2, x_3) , (y_1, y_2, y_3) be two triples of elements of \mathfrak{O} , each with at least one real element, and such that at least two of the sets $\{x_i, y_i\}$ (i = 1, 2, 3) contain a real number. Then, defining elements e, f of \mathfrak{J} by $e_{ij} = \bar{x}_i x_j$, $f_{ij} = \bar{y}_i y_j$, we have e * f = 0 if and only if $x_1 \bar{y}_1 + x_2 \bar{y}_2 + x_3 \bar{y}_3 = 0$.

Proof: We know that e and f are scalar multiples of trace 1 idempotents, and therefore (see [2]) e * f = 0 if and only if Tr(e * f) = 0. We have

$$2\operatorname{Tr}(e * f) = \sum_{i,j} (e_{ij}f_{ji} + f_{ij}e_{ji}) = 2\sum_{i,j} \operatorname{Re}(e_{ij}f_{ji}) = 2\sum_{i,j} \operatorname{Re}((\bar{x}_i x_j)(\bar{y}_j y_i)).$$

Without loss of generality we may assume that x_1 and y_2 are real, and so every term (except the i=j=3 term) contains a real number. By using the octave identities Re(a(bc)) = Re((ab)c) = Re((bc)a), we may replace each such term of the sum by $\text{Re}((x_j\bar{y}_j)(y_i\bar{x}_i))$. We may also do this in the case i=j=3, for the reason that any two elements of $\mathbb O$ lie in an associative subalgebra of $\mathbb O$. So we have

$$\operatorname{Tr}(e * f) = \sum_{i,j} \operatorname{Re}((x_j \bar{y}_j)(y_i \bar{x}_i)) = \operatorname{Re}\left(\left(\sum_j x_j \bar{y}_j\right)\left(\sum_i y_i \bar{x}_i\right)\right)$$
$$= |x_1 \bar{y}_1 + x_2 \bar{y}_2 + x_3 \bar{y}_3|^2,$$

which completes the proof.

References

[1] H. Aslaksen. Restricted homogeneous coordinates for the Cayley projective plane. Geometriae Dedicata, 40:245–50, 1991.

- [2] H. Freudenthal. Oktaven, Ausnahmegruppen, und Oktavengeometrie. Geometriae Dedicata, 19:1–73, 1985. (Informally published, Utrecht 1951).
- [3] P. Jordan. Über eine nicht-desaurguessche ebene projective Geometrie. Abhandlungen Mathematischen Seminar der Universität Hamburg, 16:74–6, 1949.