Identifying Models of the Octave Projective Plane
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Abstract.

We provide a convenient identification between two models of the projective plane over the alterna-
tive field of octaves: Aslaksen’s coordinate approach and the classic approach via Jordan algebras.
We do this by modifying a 1949 lemma of P. Jordan.

The Octave Plane

The projective plane OP? over the alternative field O of octaves (also called Cayley numbers)
may be viewed from several perspectives. Two particularly attractive models are the elegant
coordinatization due to H. Aslaksen using ‘restricted homogeneous coordinates’ [1], and the model
developed extensively by H. Freudenthal, in which the points of OP? are identified with a set of
idempotents in J, a certain Jordan algebra [2]. What is missing is a convenient means to pass
between these two languages. This paper makes the observation that a lemma due to P. Jordan
[3], when suitably modified, yields a beautiful identification. Jordan’s paper seems to have received
little attention, despite being the first paper linking J and OP2.

Briefly, here are the models. The points of Aslaksen’s plane are the nonzero triples (x1, zo, z3)
of octaves with at least one real element, modulo the relation that two such triples are equivalent if
they differ by left multiplication by an element of O. Lines may be defined as follows. Declare two
points to be orthogonal if we have 191 + z2y2 + x3ys = 0 when we choose representative triples
(x;), (y;) for the points, with at least 2 of the sets {x;,v;} (¢ = 1,2,3) containing a real number.
(This choice may always be made.) The lines of the geometry are the sets orthogonal to the points.
Clever computations in [1] show that these conditions do actually yield a projective plane. (Note:
Aslaksen required one coordinate to be unity, but this is inessential; he also defined the same set
of lines without reference to the “innner product” above. His lines and ours coincide.)

The exceptional Jordan algebra J is the (real) algebra of 3 x 3 Hermitian matrices with elements
in O, under the multiplication defined by A * B = (AB + BA)/2. The points of OP? are the trace
1 idempotents, and two such idempotents are called orthogonal if their Jordan product vanishes.
Again, the lines of the geometry are the point-sets orthogonal to points. It is convenient to identify
an idempotent of J with the vector subspace of J consisting of its real scalar multiples.

Generalizing a construction of P. Jordan, we define a map from Aslaksen’s plane to J by
(x1,x2,23) — e where e is the matrix defined by (e;;) = Z;z;. This is well-defined up to real scalar
multiplication, and it is easy to check that e is a trace 1 idempotent exactly when |z1|* + |z2]? +
23] = 1.

Theorem. The map defined above is an isomorphism from Aslaksen’s model of O P? to Freuden-
thal’s.

Proof: It is observed above that the map is well-defined, and it is trivial to check that it
is injective. To show that it is surjective, one need only find suitable (z1,z2,z3), given a trace 1
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idempotent in J, which is easy. The heart of the theorem is proving that the notions of orthogonality
between points of O P? coincide. We accomplish this in the following lemma, which is a modification
of Jordan’s Hilfsatz 2. We indicate a proof (Jordan didn’t) because the calculation is very tedious
if approached incorrectly. O

Lemma. Let (x1,22,23), (y1,Y2,y3) be two triples of elements of O, each with at least one real
element, and such that at least two of the sets {x;,y;} (i = 1,2,3) contain a real number. Then,
defining elements e, f of § by e;; = Z;x;, fij = ¥;y;, we have ex f = 0 if and only if 171 + x2Y2 +
z3ys = 0.

Proof: We know that e and f are scalar multiples of trace 1 idempotents, and therefore (see
[2]) e f =0 if and only if Tr(e* f) = 0. We have

2Tr(ex f) =Y (eijfyi+ fijeji) =2 Re(eijfji) =2 Re((@ix;) (¥;u:))-

i,J ,J ,J

Without loss of generality we may assume that z; and ys are real, and so every term (except the
i = j = 3 term) contains a real number. By using the octave identities Re(a(bc)) = Re((ab)c) =
Re((bc)a), we may replace each such term of the sum by Re((z;y;)(viz:)). We may also do this in
the case i = j = 3, for the reason that any two elements of O lie in an associative subalgebra of O.

So we have
Tr(ex f) = 3 Re((255;) wiae) = Re (3 25:) (D wiwi))
i, j i
= |z171 + 222 + 37|,
which completes the proof. O
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