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Abstract.

We consider the automorphism groups of various Lorentzian lattices over the Kisenstein, Gaussian,
and Hurwitz integers, and in some of them we find reflection groups of finite index. These provide
explicit constructions of new finite-covolume reflection groups acting on complex and quaternionic
hyperbolic spaces of high dimensions. Specifically, we provide groups acting on CH™ for all n < 6
and n =7, and on HH" for n = 1,2,3, and 5. We compare our groups with those discovered by
Deligne and Mostow and by Thurston, and show that our most interesting examples are new. For
many of these Lorentzian lattices we show that the entire symmetry group is generated by reflec-
tions, and obtain a description of the group in terms of the combinatorics of a lower-dimensional
positive-definite lattice. The techniques needed for our lower-dimensional examples are elementary;
to construct our best examples we also use certain facts about the Leech lattice. We conjecture
that Lorentzian lattices provide examples of hyperbolic reflection groups in dimensions even higher
than those considered here, and mention connections to moduli of cubic surfaces. By studying
orbits of norm 0 vectors in certain selfdual Lorentzian lattices we provide a new and geometric
proof of the classifications of selfdual Eisenstein lattices of dimension < 6 and of selfdual Hurwitz
lattices of dimension < 4.

1. Introduction

In this paper we carry out complex and quaternionic analogues of some of Vinberg’s extensive
study of reflection groups on real hyperbolic space. In [24] and [25] he investigated the symmetry
groups of the integral quadratic forms diag [—1,+1,...,+1], or equivalently the Lorentzian lattices
I,,,1. He was able to describe these groups quite concretely for n < 17, and extensions of his work
by Vinberg and Kaplinskaja [26] and Borcherds [6] provide concrete descriptions for all n < 23. In
particular, the subgroup of Aut I, ; generated by reflections has finite index just when n < 19.

In our work, we study the symmetry groups of Lorentzian lattices over the rings § and & of
Gaussian and Eisenstein integers and the ring H of Hurwitz integers (a discrete subring of the
skew field H of quaternions). Most of the paper is devoted to the most natural of such lattices,
the selfdual ones. The symmetry groups of these lattices provide a large number of discrete groups
generated by reflections and acting with finite-volume quotient on on the hyperbolic spaces CH™
and HH™. We construct a total of 18 such groups, including groups acting on CH” and HH?®.
At least one of our groups has been discovered before, in the work of Mostow and Deligne [17],
Mostow [21] and Thurston [23], but we show that our “largest” examples are new. To the author’s
knowledge, quaternion-hyperbolic reflection groups not been studied before.

Our results and techniques have already found important application in work of the author, J.
Carlson and D. Toledo [2] on moduli spaces of smooth cubic surfaces over C. Namely, the (coarse)
moduli space of such surfaces is isomorphic to the quotient of CH* by a certain reflection group
(studied here), minus the images of the mirrors of certain reflections. Furthermore, the usual (fine)
moduli space of marked cubic surfaces may be realized as a quotient of CH* by a congruence
subgroup of this reflection group.

* Supported by National Science Foundation Graduate and Postdoctoral Fellowships.
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The techniques used by Vinberg and others for the real hyperbolic case rely heavily on the fact
that if a discrete group G is generated by reflections of RH"™, then the mirrors of the reflections
of G chop RH™ into pieces; each piece may be taken as a fundamental domain for G. Work with
complex or quaternionic reflection groups is much more complicated, since hyperplanes have real
codimension 2 or 4, and so the mirrors fail to chop hyperbolic space into pieces. Our solution to
this problem is to avoid fundamental domains altogether. Each of our groups is defined as the
subgroup Reflec L of Aut L generated by reflections, where L is a Lorentzian lattice over G, € or
H. (A Lorentzian lattice is a free module equipped with a Hermitian form of signature — +--- +.)
Since Aut L is an arithmetically defined group, to show that the quotient of CH™ or HH" by
Reflec L has finite volume, it suffices to show that Reflec L has finite index in Aut L. In this case
we say that L is reflective. Our basic strategy for proving a suitable lattice L to be reflective is
to prove first that Reflec L acts with only finitely many orbits on the vectors of L of norm 0, and
second that the stabilizer in Reflec L of one such vector has finite index in the stabilizer in Aut L.
That is, we work mostly arithmetically, avoiding use of such tools as the bisectors introduced by
Mostow for his study [20] of reflection groups on CH? (including some nonarithmetic ones).

However, there are certain steps in our constructions where geometric issues play a key role.
We express each of our Lorentzian lattices L in the form A @ II; ;, where A is positive-definite and
I, ; is a certain 2-dimensional lattice, the “hyperbolic cell”. It turns out that this description of
L allows one to easily write down a large collection of reflections of L, parameterized by (a central
extension of) the lattice A. It turns out that if A satisfies several properties, such as providing a
good covering of Euclidean space by balls, then one can automatically deduce that L is reflective.
This implication is the content of Theorem 6.2. The rest of Section 6 is devoted to the application
of this theorem (and related ideas) in the study of various examples. In particular, we prove that
each of the selfdual lattices

IS n=123,4,7,
gy, n=1,5,
174 n=1,2735

is reflective. (These lattices are defined in Section 3 and characterized in Theorem 7.1.) For some
of these, we obtain more detailed information. In particular, we prove that Reflec 1571 = Aut If;l
for n = 2, 3, 4 or 7 and that Reflec I,gfl has index at most 4 in Aut Igfl for n = 2, 3 or 5. The group
Reflec [, 4871 is particularly interesting because the quotient of CH* by it is a partial compactification
of the coarse moduli space of smooth cubic surfaces (see [2]). We also give explicit descriptions
of the reflection groups of If 1 Hﬁ , and Ii{l as subgroups of certain Coxeter groups, acting on
CH' 2 RH? and HH! = RH*.

We also note that the geometric idea we use, namely that good coverings of FEuclidean space can
lead to hyperbolic reflection groups, applies even when C and H are replaced by the nonassociative
field Q of octaves. In [1] we construct two octave reflection groups acting on OH? and one acting
on OH! =2 RH?®, and interpret these groups as the stabilizers of “lattices” over a certain discrete
subring of Q.

We provide background information on lattices in Section 2 and examples of them in Section 3;
the latter should be referred to only as needed. Section 4 establishes our conventions regarding
hyperbolic geometry. In Section 5 we relate certain geometric properties of a positive-definite
lattice A to the reflection group of A @ II;; and lay other foundations for Section 6, where we
construct all of our examples. In Sections 5 and 6, statements of many results are complicated
by the fact that while lattices over the three rings G, € and H may be treated in parallel, the
exact results one can obtain depend slightly on the ring under consideration. The reader may
focus on just one of these rings (we suggest &) and still fully understand all of the ideas presented.
In Section 7 we explain the correspondence between primitive isotropic sublattices of I,, 41,1 and
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positive-definite selfdual lattices of dimension n. We use this correspondence to provide a quick
geometric proof of the classification of selfdual lattices over & and H in dimensions < 6 and < 4,
respectively. The only examples besides the trivial lattices are the Coxeter-Todd lattice Ag and a
quaternionic form AJ' of the Barnes-Wall lattice. In Section 8 we identify properties of three of
our groups, namely Reflec L for L = 178’1, 148,1 and Hg,{u that distinguish them from the 94 groups
constructed in [17], [21] and [23]. We also sketch a proof that Reflec Ig?’ , appears on the lists given
there. Finally, in Section 9 we make a few closing comments and conjecture that the Lorentzian
lattices I, 1 over €, G and H are reflective for n considerably larger the cases considered here.
The easiest route to a new reflection group is our treatment of 1159’ 1= Eg9 <) ng’ 1» which

acts on CH®. The proof that H59’ 1 is reflective requires only Theorem 5.1, the Gaussian case of
Theorem 5.2, and the relevant parts of Theorem 6.2 and Corollary 6.3. There are two “tracks”
through Section 6, the first leading to a large number of low-dimensional examples (including 17, 5% 1)
and the second leading to a detailed study of the lattices 1787 , and 153,{1- See the comments there
for more information. Here we mention only that these two lattices succumb to our techniques
because of several special properties of the Coxeter-Todd and Barnes-Wall lattices. In particular,
the automorphism group of each is generated by reflections, and (suitable scaled) each has a very
nice embedding in the Leech lattice Aoy. Our basic approach in this paper was inspired by Conway’s
remarkable description [9] of the isometry group of the Z-lattice Ilo51 = Agg @ II1,1 in terms of
the combinatorics of Ay, so it is pleasing to see Aoy playing a role here as well.

This paper is derived in part from the author’s Ph.D. thesis at Berkeley; he would like to
thank his dissertation advisor, R. Borcherds, for his interest and suggestions—in particular for
suggesting that the quaternionic Barnes-Wall lattice would provide a reflection group on HH®.

2. Lattices

We denote by R any one of the rings €, G, and H—the Eisenstein, Gaussian, and Hurwitz integers.
That is, § = Z[i] and & = Z[w], where w = (=1 + 1/=3)/2 is a primitive cube root of unity. The
ring H is the integral span of its 24 units +1, +i, £j, £k and (£1 £i 4 j £ k)/2 in the skew field
H of quaternions. We write K for the field (C or H) naturally containing R. Conjugation z — z
denotes complex or quaternionic conjugation, as appropriate. For any element x of K, we write
Rez = (z + z)/2 and Imx = (z — Z)/2 for the real and imaginary parts of =, and say that z is
imaginary if Rex = 0. If X C K then we write Im X for the set of imaginary elements of X. For
any x € K, 27 is a positive real number, and the absolute value |z| of z is defined to be (zz)'/2.
It is convenient to define the element § = w — @ = /=3 of &. We will sometimes also consider w
and 0 as elements of H, via the embedding & — H defined by w +— (=1 +1i+j+ k)/2 or equally
well by 0 +—i+j+k.

A lattice A over R is a free (right) module over R equipped with a Hermitian form, which is
to say a Z-bilinear pairing (the inner product) (:|-) : A x A — K such that

(zly) = (ylz)  and  (z|ya) = (z[y)a

for all @ € R. A Hermitian form on a (right) vector space over K is defined similarly. Section 3
defines a number of interesting lattices and lists some of their properties. Sometimes we indicate
that a lattice A is an R-lattice by writing A® or somesuch.

If S C A then we denote by S+ its orthogonal complement: those elements of A whose inner
products with all elements of S vanish. We say that A is integral if for all x,y € A, the inner
product (z|y) lies in R, and that A is nonsingular if A+ = {0}. All lattices we consider will be
integral and nonsingular unless otherwise specified. The dual A* of A is the set of all R-linear
maps from A to R. An integral lattice A is called selfdual if the natural map from A to A* is onto.
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A selfdual lattice is sometimes called “unimodular”, because the matrix of inner products of any
basis for A has determinant +1; we use “selfdual” to avoid discussing determinants of quaternionic
matrices.

The norm of a vector v € V is defined to be v? = (v|v); some authors call this the squared
norm of v. We say that v is isotropic, or null, if v> = 0. A lattice is isotropic (or null) if each
of its elements is. A lattice is called even if each of its elements has even norm and odd if it is
not even. A sublattice A’ of A is called primitive if A’ = AN (A’ ®@R). A vector v of A is called
primitive if v = wa for w € A and o € R implies that « is a unit. Because the rings G, & and H
are principal ideal domains, v is primitive if and only if its R-span is primitive as a sublattice. We
will sometimes write (v) for the R-span of v. In the context of Lorentzian lattices (see below), any
isotropic sublattice has dimension < 1. When we refer to null sublattices of Lorentzian lattices we
implicitly restrict attention to those of dimension 1—that is, we exclude from consideration the
zero-dimensional lattice. In Lorentzian lattices, the concepts of primitive null vectors and primitive
null lattices almost coincide.

We sometimes define an R-lattice by describing a Hermitian form on R™. We do this by giving
an n X n matrix (¢;;) with entries in R such that (;S_” = ¢j;- Then the Hermitian form is given by

n

<(x1>"'7xn)|(y1a"'>yn)> = Z iﬂi(pijyj :

1,j=1

We may also view a lattice as a subset of a vector space V over the field K—simply take V to be
the (right) vector space A @ R over K = R @ R. The Hermitian form on A gives rise to one on V.
If A is nonsingular then A* may be identified with the set of vectors in V' having R-integral inner
product with each element of A.

Every nonsingular Hermitian form on a vector space V over K is equivalent under GL(V)
to one given by a diagonal matrix, with each diagonal entry being 4+1. The signature of a form
® is the number of 4+1’s minus the number of —1’s. The signature of ® characterizes ® up to
equivalence under GL(V). We write K™™ for the vector space K" equipped with a Hermitian
form of signature n — m. The isometry group of K™ is the unitary group U(n,m;K). The term
“Lorentzian” is applied to various concepts in the study of real Minkowski space R™!. By analogy
with this we call an n-dimensional lattice Lorentzian if its signature is n — 2.

If A is positive-definite then A ® R is a copy of Euclidean space, under the metric d(z,y) =
v/ (z — y)?. Points of A @ R at maximal distance from A are called deep holes of A. The maximal
distance is called the covering radius of A, because closed balls of that radius placed at lattice points
exactly cover A ® R. The lattice points nearest a deep hole are called the vertices of the hole. The
covering radii of the Z-lattices Im G, Im & and Im 3 are 1/2, 3'/2/2 and 3'/2/2, respectively. The
first two are obvious and the last follows because Im H is the 3-dimensional cubic lattice spanned
by i, j and k. Any two deep holes of Im R are equivalent under translation by some element of
ImR.

Suppose that V is a K-vector space, £ € K is a root of unity and v € V' has nonzero norm.
We define &-reflection in v to be the map

(rlo)

r2

v—v—r(l-=2¢) (2.1)
This is an automorphism of V' as a right vector space equipped with Hermitian form (-|-); it fixes
r+ pointwise and carries r to r¢. (Warning: if K = H then although the reflection acts by right
scalar multiplication on r, it does not act this way on all of the H-span of r. This is due to
the noncommutativity of multiplication in H.) Unless otherwise specified, we will use the term
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“reflection” to mean “reflection in a vector of positive norm”. Under the conventions of Section 4,
(—1)-reflections in negative norm vectors act on hyperbolic space as inversions in points, rather
than by reflections in hyperplanes. This is why we focus on positive-norm vectors. We call 7+ the

mirror of the reflection. Reflections of order 2, 3,... are sometimes called biflections, triflections,
etc. A &-reflection is a biflection just if £ = —1; in this case we recover the classical notion of a
reflection.

Suppose L is an integral lattice. If v € L has norm 1 (resp. 2) then we say that v is a short
(resp. long) root of L. Inspection of Eq. (2.1) reveals that if £ is a unit of R then {-reflection in any
short root of L preserves L. Furthermore, biflections in long roots of L also preserve L. We define
the reflection group Reflec L to be the subgroup of Aut L generated by reflections (in positive-
norm vectors), and we say that L is reflective if Reflec L has finite index in Aut L. In general, a
group generated by reflections is called a reflection group. Since Aut L is an arithmetically defined
subgroup of the semisimple real Lie group U(L®@R;K), a theorem of Borel and Harish-Chandra [8]
implies that it has finite covolume therein. It follows that L is reflective if and only if Reflec L also
has finite covolume. We define Reflecy L to be the subgroup of Reflec L generated by reflections
in the short roots of L. It may happen that Reflec L contains reflections other than those in its
roots, but we will not use such reflections except briefly in the proof of Theorem 5.1.

3. Reference: examples of lattices

This section contains background information on the various specific complex and quaternionic
lattices we use; it should be referred to only as necessary. We briefly define each lattice as a module
over R, list a few important properties, and give references to the literature. The main source is
[14, Chap. 4]. All lattices described here are integral. When lattices are described as subsets of
K™, it should be understood that the Hermitian form is ((z1,...,%n)[(y1,---,Yn)) = D Tili.

The simplest lattice is R™, which is obviously selfdual. Its symmetry group contains the left-
multiplication by each diagonal matrix all of whose diagonal entries are units of R. It is easy
to see that this is the entire group preserving each of the scalar classes of short roots, and thus
must contain the reflections in these roots. The group generated by these reflections has the same
order as the group of diagonal matrices, so the groups coincide. (The reason the argument is this
complicated is that the diagonal matrices act on the left, whereas reflections are defined in terms of
right-multiplication. This is only important if R = H.) Adjoining to this group the permutations
of coordinates, which are generated by biflections in long roots such as (1, —1,0,...,0), we see that
Aut R™ is a reflection group.

If A is a lattice, then its real form is the Z-module A equipped with the inner product (x,y) =
Re(x|y). Here are three forms of the Eg root lattice:

Egzi{(:cl,...,xg)ezs)xizxj (mod 2), inezlz} ,

Eg:%{(:cl,...,xél)egél‘xizxj (mod 1+ 1), inEQS} ,
Eg{:{(ml,xg)ef){2‘ml—l—:pge(l—l—i)f}{} .

It is straightforward to identify the real forms of these R-lattices with each other; each has cov-

ering radius 1 and minimal norm 2. Often the dimension of a lattice is indicated by a subscript.

Unfortunately, as for Fg, this sometimes refers to its dimension as a Z-lattice and sometimes to its

dimension as an R-lattice. There seems to be no universal solution to this notational problem.
Another set of useful even Gaussian lattices are

Dgn:{(xl,...,xn)egn Z:piEO (modl—i—i)} ,
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whose real forms are the Ds, root lattices. The D, lattice is also the real form of H, scaled up by
a factor of 2!/2. The covering radius of Ds, is (n/2)'/2.
The Eisenstein lattice

D3(vV=3) ={(z,4,2) €€ |z +y+2=0 (mod6)}

was introduced by Feit [18]. It has 54 long roots and 72 vectors of norm 3; biflections in the former
and triflections in the latter preserve the lattice. Its covering radius is 1; this can be seen as follows.
According to [14, p. 126], the real form of the lattice { (x,y,2) € & ‘ x=y =z (modf) } is the
Es root lattice scaled up by (3/2)'/2. This identification can be used to show that the real form
of D3(v/=3) is the real form of E} scaled up by (3/2)'/2, where E{ is the dual (over Z) of Es. By
[14, p. 127], the covering radius of E} is (2/3)/2, so the covering radius of D3(v/—3) is 1.

The Coxeter-Todd lattice A§ is a selfdual E-lattice with minimal norm 2. It is discussed at
length in [13]; we quote just one of the definitions given there.

1

Agza{(azl,...,xG)EE z; =x; (mod 0E), inGSE} .

It automorphism group is the finite complex reflection group 6 - Uy(3):2, and Ag shares many
interesting properties with Eg and the Leech lattice Agy. We refer to [13] for details.
The quaternionic Barnes-Wall lattice is

1 .
AJ = 1+i{(:c1,...,:r4)€3{ z;=x; (mod (1+1i)H), ineﬁf} .

We may recognize the real form of 21/2A5¢ by identifying the vector
(a1 + b1i+ c1j + dik, ... aq + bai + c4j + dyk)

with the vector in R'®¢ whose coordinates we arrange in the square array

ay az|asz aq
di co|ds ca

B
S
=
QU
o

by dy
C1 b2 C3 b4

where the inner product is the usual one on RS, This array may be taken to be (say) the left 4
columns of the 4 x 6 array of the MOG description [14, Chaps. 4, 11] of the Leech lattice Aoy, and
then the real form of 21/2AJ¢ is visibly the real Barnes-Wall lattice BW [14, Chap. 4].

Theorem 3.1. The lattice AJ¢ is selfdual and spanned by its minimal vectors, which have norm
2. Its automorphism group is generated by the biflections in its minimal vectors. Each class of AJ¢
modulo AJ (1 +1) is represented by a vector of norm at most 3. The deep holes of A" coincide
with the set { A\(1+1)7' | A€ AT, A2 =1(2) }.

Proof: Proofs of all claims except the last appear in [3, Sect. 4.6]. Most of the rest of the
work has been done for us by Conway and Sloane [11, Sect. 5]. They showed that the deep holes
of BWig nearest 0 are the halves of certain vectors v € BWig of norm 12, and further that such
v are not congruent modulo 2 to minimal vectors of BWig. (They write Ajg for BWig.) After
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rescaling, we find that the deep holes of AJ' nearest 0 are the halves of certain elements v of norm
6 in AJ'. Since each such v has even norm and is not congruent modulo 2 = (1 —i)(1 +1) to any
root, it must map to 0 in A /AJY(1 +1). Therefore v = A(1 +i) for some A of norm 3 in AJ* and
so the deep holes nearest 0 have the form v/2 = A\(1 +1)/2 = Xi(1 +1) L.

The deep holes of AJ are the translates by lattice vectors of the deep holes nearest zero. That
is, the set of deep holes coincides with the set

{ A1 +i)7? ’ A € AJC is congruent modulo 1 +1i to a norm 3 lattice Vector} .

The norms of any two lattice vectors that are congruent modulo 1+ i have the same parity. Since
each lattice vector is congruent to some vector of norm 0, 2 or 3, the set above coincides with the
one in the statement of the theorem. O

Now we describe some indefinite selfdual lattices. The lattice Ig%m is the R-module R"+™
equipped with the inner product given by the diagonal matrix

diag [+1,...,+1,—1,...,—1]

with n (resp. m) +1’s (resp. (—1)’s). The lattice H& is the module R? with inner product matrix
(? (1)) If R =& or H then Hlj?l = 113?1. If R = G then this lattice is even, whereas Iﬁl is odd. We
define the Gaussian lattices I to be the lattices

Adm—+n,n
g, =Efe oBoni e ol ,

where there are m summands E§ and n summands ng, 1- These lattices are even and selfdual. By
Theorem 7.1, every indefinite selfdual lattice over R appears among the examples just given. In
particular, A§ & IIf, = I£, and AJ* & I} = IS,

4. Hyperbolic space

The hyperbolic space KH"*! (n > 0) is defined as the image in projective space KP" ! of the set
of vectors of negative norm in K" its boundary 9K H"*! is the image of the (nonzero) null
vectors. We write elements of K" in the form (\; g, v) with A € K™° and p, v € K, with inner
product

((A1s p1,v1)|(A2; 2, v2)) = (M| A2) + flve + vrps .

This corresponds to a decomposition K" 11 =~ K™% g ((1) (1)) We will sometimes refer to points in

projective space by naming vectors in the underlying vector space.

It is convenient to distinguish the isotropic vector (0;0,1) and give it the name p. Every point
of KH™1 UJKH™ ! except p has a unique preimage in K" ™! with inner product 1 with p, and
so we may make the identifications

KH™ M = {(\1,2) : A € K", A2 + 2Re(z) >
OKRH™ M {p} = {(X1,2) : A€ K", \2 + 2Re(2) =

0} .
. (4.1)

}.

We define the height of a vector v € K™™' to be htv = (p[v). For v = (\;p,v) we simply
have ht v = u. For vectors of any fixed norm, the height function measures how far away from p
the corresponding points in projective space are; the smaller the height, the closer to p. We will
sometimes say that for vectors v and v’ the height of v’ is less than that of v. By this we will mean
that |htv'| < |htv].



We say that a vector (\; i, v) with p # 0 lies over A\u=! € K™. Tt is obvious that all the scalar
multiples of any given vector of nonzero height lie over the same point of K", so we may think of
points in projective space (except for those in pt) as lying over elements of K”. The geometric
content of this definition is that the lines in KP"*! passing through p and meeting KH"+! are
in one-to-one correspondence with K”. The points in the line associated to A € K™ are just the
scalar multiples of those of the form (A;1,z) with z € K. Special cases are given in Eq. (4.1).
In particular, the family of isotropic vectors of height one lying over A\ are parameterized by the
elements of Im K. This description of OKH" ™! \{p} as a bundle over K" with fiber Im K will help
us relate the properties of lattices in K" to properties of groups acting on KH"*+1.

The subgroup of U(n+1, 1;K) fixing p contains transformations T, , (with z € K", z € ImK)
defined by

pr=p
Too: (0;1,0) = (251,2 — 22/2) (4.2)
(A;0,0) — (A0, —(z|A)) for each A € K".
(The map is defined in terms of some unspecified but fixed inner product on K".) We call these

maps translations. If we regard elements of K" ™! as column vectors then T,,. acts by multipli-
cation on the left by the matrix

I, T 0
0 1 0
—r* oz —-2%/2 1

(We have written z* for the linear function y — (z|y) on K™ defined by x.) We have the relations

Tz,z % Tw’,z’ = Tx+x’,z+z’+lm(x’|x> (43)
-1
Tx,z = T—L—Z
-1 —1
TLZ o Tl,/’z/ o Tz,z % Tw’,z’ = TO,QIm(z’|:E) s

which are most easily verified in the order listed. These relations make it clear that the translations
form a group and that its center and commutator subgroup coincide and consist of the Tg .. We call
elements of this subgroup central translations. The translations form a (complex or quaternionic)
Heisenberg group which acts freely and transitively on OKH" 1~ {p}. If v € K"T! lies over
A € K" then T, ,(v) lies over A+z. That is, the translations act in the natural way (by translations)
on the points of K™ over which vectors in K"*1! lie.

We note that these constructions all make sense with K = R, and in fact simplify. Since
ImR = 0, the translations form an abelian group, which is just the obvious set of translations in
the usual upper half-space model for RH™*!. The obvious projection map from the upper half-
space to R™ carries points of RH™t! to the points of R™ over which they lie, in the sense defined
above. This is the source of the terminology.

The simultaneous stabilizer of (0;1,0) and (0;0,1) is the unitary group U(n, 0; K), which fixes
pointwise the second summand in the decomposition K" ™! = K™ @ K. If S is an element of
this unitary group then matrix computations reveal

SoT,,0S8t=Ts,., . (4.6)

This is useful in its own right and also shows that the group of translations is normal in the full
stabilizer of p.



5. Reflections in Lorentzian lattices

The Lorentzian lattices we will consider all have the form A@®II; 1, where A is a positive-definite R-
lattice and II ; is the 2-dimensional selfdual lattice defined by the matrix II;,; = ((1) (1)) In general
we will write L for a Lorentzian lattice A @ II; 1, where A and even R may be left unspecified,
except that A will always be positive-definite. We write elements of L = A @ II;; in the form
(A\; i, v) with A € A and p,v € R. This embeds L in the description of K"*!! given in Section 4
and allows us to transfer to L several important concepts defined there. In particular, p = (0;0,1)
is an element of L and we define the height of elements of L as before. For v € L of nonzero height
we can speak of the point of A ® R over which v lies (which need not be an element of A).

There are two basic ideas in this section. First, that this description of L provides a way to
write down a large collection of reflections of L, essentially parameterized by the elements of a
discrete Heisenberg group of translations. The second idea is that if (i) 7 is a root of L, (i) v is
a null vector in K™, (i) neither r nor v has height zero, and (i) the points of K" over which
r and v lie are sufficiently close, then by applying a reflection of L one can reduce the height of v.
(This reflection might be in some root other than r.)

Both of these ideas can be found, in the simpler setting of real hyperbolic space, in Conway’s
study [9] of the automorphism group of the Lorentzian Z-lattice II>51 = Ags @ II11. Here Ay
is the famous Leech lattice, and Conway found a set of reflections permuted freely by a group of
translations naturally isomorphic to the additive group of Ass. By using facts about the covering
radius of A4 and using the second idea described above, he was able to prove that these reflections
generate the entire reflection group of Il5 ;.

The major complication in transferring this approach to our setting is that the discrete group
of translations is no longer a copy of A but a central extension of A by Im R. This issue dramatically
complicates the precise formulation (Theorems 5.2 and 5.3) of the second main idea. For example, it
is complicated to state exactly what happens when one can’t quite reduce the height of v € KnHbt
by using a reflection.

We begin by finding the translations in Aut L. and showing that under simple conditions,
Reflec L contains a large number of them. The translation T, . preserves L just if x € A and
z—122/2 € R If R = & or H then for any given x € A we may choose z € ImK such that
T,.. € Aut L, by taking z = 0 or 6/2 according as z? is even or odd. If R = G then such a z exists
if and only if 22 is even; z may then be taken to be zero. The different rings behave differently
because & and H contain elements with half-integral real parts, while § does not. All the central
translations Ty , with z € R lie in Aut L—they fix A pointwise and act by isometries on the II; ;
summand. The assertions of the next theorem are precise formulations of the idea that if Aut A
contains many reflections then Reflec L contains many translations.

Theorem 5.1. Let L = A & II; ; for some positive-definite R-lattice A. Define
Ao ={xz € A|T, . € Reflec L for some z € InK } and
§={ze€Im®R|Tp. € Reflec L} .
(i) If no element of A is fixed by every reflection of A then A has finite index in A.
(ii) Ifr is a root of A (a long root, if R = G) having inner product 1 with some element of A, then
r € Ag.
(iii) 8 iongajns the integral span of the elements of the form 2Im(x|y) with z,y € Ay.

(iv) Under the hypothesis of (i), the stabilizer of p in Reflec L has finite index in the stabilizer in
Aut L.

Remarks: By Eq. (4.3) and (4.4), Ag is closed under addition and negation, so assertion
(i) makes sense. We will not need an analogue of (i) for short roots in Gaussian lattices. In
Theorem 6.4, similar but stronger hypotheses are used to obtain similar but stronger conclusions.
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Proof: Let R be a &-reflection of A with mirror M. We regard R as acting on L, fixing the
summand I1; ; pointwise. If T, , € Aut L then T o Ro T}, € Reflec L. By Egs. (4.4), (4.6) and
(4.3),

T‘L_,Zl oRo Tw,z oR! = T—x,—z © TRw,z = TRxfx,f Im(Rz|z) »

proving that
Rr—xz € Ag (5.1)

for all x € A and all reflections R of A. The geometric picture behind this computation is that
both M and its translate by T, 1 pass through p and are parallel there. It is not surprising that
one can construct translations out of reflections in pairs of parallel mirrors.

(i) We will show first that Ay contains an R-sublattice orthogonal to M. Suppose £ is an nth
root of unity. Then the self-map (n times the projection to M) of A given by z — >."'_ R%(z)
is an R-lattice endomorphism. It rank as a map on A is the same as its rank as a map on the
K-vector space A ® R. Since R is a reflection, this rank is dim A — 1, and we see that A contains a
1-dimensional R-sublattice orthogonal to M. If x is a nonzero element of this lattice then Rz — x
is also, and Eq. (5.1) shows that Rz — x lies in Ag. This shows that Ay contains a 1-dimensional
R-sublattice orthogonal to M. By hypothesis, no vector of A is orthogonal to every mirror of A,
so Ag has finite index in A.

(1) If 72 = 1 then we only need to prove anything in the cases R = & or H. Take x = r and R
to be the (—w)-reflection in 7. Then Eq. (5.1) shows that Ay contains Rx — z = r(—w) — r = r.
Applying the same argument to rw we see that r € Ag.

If 72 = 2 then in Eq. (5.1) we take R to be the biflection in 7 and by hypothesis we may take
x € A with (z|r) = 1. We find that Rz — x is a multiple of r because it lies in the (—1)-eigenspace
of R. Since it has inner product —2 with r, we have Rx — z = —r, which implies r € Ag.

(#ii) Follows immediately from Eq. (4.5) by taking commutators of translations of Reflec L.

(iv) The null vectors of height 1 in L are exactly those vectors (A;1,z) with A € A, z € R
and Rez = —A?/2; the translations in Aut L permute them transitively. Since the simultaneous
stabilizer of p and one of these, say (0;1,0), is the finite group Aut A, it suffices to prove that the
group of translations in Reflec L has finite index in the group of those in Aut L. This follows from
the facts that Ao has finite index in A and § has finite index in ImR. The former fact is (i) and
the latter follows from (i) and (7). a

It is straightforward to enumerate the roots of L of any given height h; For h = 1 one finds
that these are the vectors

Norm 2: (A1, 2), Rez = (2 — \?)/2
Norm 1: (A1, 2), Rez = (1 - \?)/2,

with A € A and z € R. If R = &€ or H, then height 1 roots of both norms lie over each A € A,
and the translations of L act simply transitively on each set. If R = G then height one roots lie
over each A € A: long roots over A of even norm and short roots over A of odd norm. Again, the
translations act simply transitively on each set. This is another manifestation of the fact that &
and H but not G have elements with half-integer real part. One may also enumerate roots of larger
heights—for example, if A is an E-lattice, then there are short (resp. long) roots of L of height 6
over each A\0~1 € A@~! with A2 =1 (resp. 2) modulo 3. For more information see Table 6.1 and
the discussion concerning it.

Now we will develop the second main idea of this section, by investigating the effects of
reflections in roots of small height h. We first deal with long roots and then with short ones. The
results are complicated to state because the exact results one can obtain vary slightly with the
choice of R and h. The essential ideas are all present in the R = &, h = 1 case.
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Theorem 5.2. Suppose A is a positive-definite R-lattice and L = A @ II, ;. Let h be

1 ifR=G orH, or
lord ifR=E.

Suppose r is a long root of L of height h, lying over Abh=' for A € A. Let v € L ® R be isotropic,
have height one and lie over £ € A @ R. Set D* = (¢ — Ah™1)? and suppose D* < 1/|h|? (or
D? < 3Y2 ifR = G). Then there exists a long root r’' of L of height h also lying over Ah™! such
that either

(i) biflection in r’ carries v to a vector of height smaller than that of v,

or else one of the following holds:

(ii) R=G, D?> =3Y2 and (r'|v) =1 — 3'/2/2 +i/2.
(iii) R =& or H, D> =1/|h|? and {r'|v) = h~1(w + 1).

Proof: Since v has height 1 and norm 0 and lies over ¢, we know that for some w € ImK we
have

v=(l1,w—l%2).
Similarly, we deduce that

2 - \?
=({Nh ———h 5.2
= (et ) (5:2)
for some 2z, € K such that Re(hzg) = 0. Every other long root 7’ of L with height h that lies over

A1 has the form 7/ = r + (0;0, z) for some z € R satisfying Re(hz) = 0. We will obtain the
theorem by choosing z carefully.

We have
_ 2 - A)h
<’r‘/|’0> = </\|€> + h(w — 62/2) + (% + Zo + Z)
r 22 2
= b7t [h(A|6) + |hPw — |h|2£ + 2 2)\ + hzy+ hz}

L
=h |1 % (62 —20\n7HE) + ()\h’l)2> + |h|*w + hzo + hz]

r 2
= hp! 1fﬂ
2

(62 SR (AR (Ah*l)Q)

|h|? -1 1 2 L
—7<—<>\h 10) + (LR ) + hf2w + Bz + hz

h 2
— ! [(1 - %D2> + [h[2 Tm{ARTHO) + [RPw + hzo + hz]

=h7a+ B] (5.3) ,

where a = 1 — |h|?D?/2 is the real part of the term in brackets and B is the imaginary part. (Note
that hzy and hz are imaginary because for all z,y € K, Re(zy) = Re(gz) = Re(yx) = Re(Zy) and
we know that hzg and hz are imaginary.) The important thing to observe here is that a contains
information about D?, which is bounded by hypothesis, and B contains a term hZ, over which we
have some influence.
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Now let v' be the image of v under biflection in 7’. Since v' = v — r'{r'|v), we have

(pv") = (plv) = (plr)(r'lv)
=1—hh '(a+ B)
= |h>D?/2 - B
=d - B, (5.4)

where @’ = 1 —a = |h|?D?/2 is real and B is as above. We may take z to be any element of R
satisfying Re(hz) = 0; this condition may be written z € RN (h - ImK). Since the definition of B
involves the term hz we see that by changing our choice of z we may change B by any element of
h-RNO(h-ImK) =h- (RN ((ImK) - h))
= (hR) N (h(ImK)h)
= (AR)NImK
= Im(hR) .

We will now consider the possibilities for R separately.

If R = G then we only need to prove anything for the case h = 1; then Im(hG) = ImG,
so by making an appropriate choice of z we may suppose that B = bi with b € (—1/2,1/2].
By hypothesis, a’ < 31/2/2. Therefore |ht (v/)|? = (a’)? + |B|? is less than 1 = |[htv|? (so that
conclusion (i) applies) unless a’ = 3'/2/2 and b = 1/2. In this case, D? = 3'/2 and by Eq. (5.3)
we have (r'|v) = h~!(a + B), so conclusion (i) applies.

In each of the remaining cases (R = H and h = 1; R = € and h = 1 or 0), we observe that
Im(hAR) = Im R and recall that Im R has covering radius 3/ 2/2. That is, by making an appropriate
choice of z we may suppose | B|? < 3/4. We have assumed that D? < 1/|h|?, so a’ < 1/2. Therefore
|ht (v')|* = (a’)® + |BJ? is less than 1 = |ht (v)|? (so that conclusion (i) applies) unless a’ = 1/2
and |B|? = 3/4. In this case we see that D? = 1/|h|? and that B is a deep hole of ImR. Since
all deep holes of ImR are equivalent by translations of Im R, by choice of z we may take B = /2.
Then by Eq. (5.3) we have (7'|v) = h *(a + B) = h~!(w + 1), so conclusion (444) applies. a

Theorem 5.3. Let L = A @ I, ; for some positive-definite R-lattice A. Let h be one of

1,0, 2, or 20 ifR=E, or
1,1+1i, or2 ifR=H or §.

Let r be a short root of L of height h lying over Ab™%, with A € A. Let v € L ® R be isotropic,
have height one and lie over £ € A @ R. Set D? = (¢ — Ah™')? and suppose D? < 1/|h|?>. Then
there exists a short root r' of L also of height h and lying over Ah~! such that either
(i) some reflection in r" carries v to a vector of height smaller than that of v,
or else D? = 1/|h|? and (exactly) one of the following holds:
(ii) (r'|v) = 0.
(iii) R=G, h =141 or2, and (v'|v) = h71i.
(iv) R=E&, h=2or 20, and (r'|v) = h™10.
(v) R=H, h=1+iand (r'|v) =h"ti=(>1+1)/2.
(vi) R =3, h =2 and (r'|v) = h=1(bi + ¢j + dk) for some b, c,d € {0,1}, not all zero.

Remarks: For each h treated, the elements of R with absolute value |h| are unit scalar multiples
of each other and generate a 2-sided ideal in R. It appears that the values of h treated here are the
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only ones for which conclusions similar to these can be obtained. The only place in this paper that
cases (i), (i) and (vi) are used is in the proof of Theorem 6.2. Furthermore, none of these cases
are required for the examples treated with that theorem. Thus, the reader may ignore these cases
if desired. Omitting their treatment here would not significantly shorten or simplify the proof.

Proof: Following the first part of the proof of Theorem 5.2, we have
v=(41,w—*/2)

for some w € ImK, and
1— )2

for some zg € K such that Re(hzo) = 0. Continuing to follow that argument, the other short roots
' of L lying over Ah~! all have the form 7 + (0;0, z) for z € R such that Re(hz) = 0. Modifying
the derivation of Eq. (5.3) slightly we find

o) =000 +5 (= ) + (0 42+ L5200

1 |A?
==t [(5 — %D2> + (|R[? ITm{ARTHE) + |R|*w + hzo + hz)]

=h~'[a + B] (5.6)

where a = (1 — |h|2D?)/2 is the real part of the term in brackets and B is the imaginary part. The
slight difference between the terms a in Eqs. (5.3) and (5.6) is due to the replacement of (2 — \?)
in Eq. (5.2) by (1 — A?) in Eq. (5.5), which is due to the fact that 7 is now a short root.

We take v/ to be the image of v under {-reflection in 7’ (we will choose £ later). Since
v =v—7r'(1=¢&)(r'|v), we have

(plv) = (plv) = (pIr") (1 = &) (r'|v)

:l—i—%[cH—B]. (5.7)

By hypothesis, D? < 1/|h|?, so a € [0,1/2]. As before, by changing our choice of z we may change
B by any element of Im(hR). Now we will treat G, & and H separately; the analysis is just like
that of the proof of Theorem 5.2 except that our freedom to choose £ creates opportunities which
require more complicated computations to exploit.

Suppose R = G. If h =1 (resp. 1+ i or 2) then Im(hS) is the set of integral multiples of i
(resp. 2i). Writing B = bi with b € R, we may take b € [0,1) (resp. b € (—1,1]). Taking £ = +i we
find by Eq. (5.7) that (p|v') = 1+ (£i—1)[a+bi]. Computing the norm of this, or drawing pictures
in C, shows that if b € [0,1) then upon taking £ = +i we find ht (v) < 1 = ht (v) (so conclusion (%)
applies) unless a = b = 0, in which case Eq. (5.6) shows that conclusion () applies. If b € (—1, 0]
then taking £ = —i we obtain the same result. Finally, if b = 1, which can only happen if h =141
or 2, then taking & = +i yields ht (v') < ht (v) unless @ = 0. If @ = 0 then D? = 1/|h|? and by
Eq. (5.6) we find that

(r'|v) = b a + bi] = A 10 +1) ,

so conclusion (i) applies.
Now suppose R = €. If h = 1 (resp. 0, 2, 20) then Im(hE) is the set of integer multiples
of § (vesp. 6, 26, 20). Writing B = bi with b € R we may take b € [0,3'/2) (resp. b € [0,3'/2),
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b e (—3Y/2,3Y2], b € (=3'/2,31/2]). Using Eq. (5.7) and drawing pictures in C, we see that if
b € [0,3/2) then upon taking £ = —@ we find |ht (v')| < |ht (v)| (so that conclusion (i) applies)
unless @ = b = 0, in which case (ii) applies. If b € (—3'/2,0] then taking £ = —w we obtain the
same result. Finally, if b = 3'/2, which can only happen if h = 2 or 26, then taking & = —@ yields
|ht (v')| < |ht (v)| unless a = 0. If @ = 0 then D? = 1/|h|? and by Eq. (5.6) we have

(r'|v) = h=10 +3Y%1] = h=10 ,

so conclusion (7v) applies.
Now suppose R = H. We write B as bi + ¢j + dk with b,c,d € R. We first carry out a
computation that will allow us to use the 24 units of H effectively: we claim that there is a unit

¢ of H with Re&’ = —1/2 such that
[1+&(a+B)? = (a—1/2)* + (|b] = 1/2)* + (le| = 1/2)* + (|d| - 1/2)*. (5.8)

For any unit &', the left side is just the square of the distance between a + B and —&' (proof:
left-multiply by 1 = | —¢&’|?). Setting —¢’ = (1+i4j+k)/2, with each of its i, j and k components
having the same sign as the corresponding component of B (or a random sign if that component
of B vanishes), the right hand side becomes another expression for this squared distance, proving
the claim.

If h =1 (resp. h = 2) then Im(hJH) is the integral span of i,j and k (resp. of 2i, 2j and 2k),
so we may take each of b, ¢ and d to lie in [0,1) (resp. in (—1,1]). Now suppose h = 1 +1i. It is
easy to check that

Im((14+1)H) ={bi+cj+dk|bc,d€Z, b+c+d=0 (mod?2)} .

That is, Im(hJH) is spanned by j+k, k —i and i+ k, so by choice of z we may take b € (—1, 1] and
e, de€0,1).
Let & be a unit of H with Re&’ = —1/2 satisfying Eq. (5.8), and suppose for a moment that
there is a unit & of H such that B
& =nh(E—-1)h/Ih*. (5.9)

Then by Eqs. (5.7), (5.9) and (5.8),

hto'|? =1+ ¢ (a+ B)]?
= (a—1/2)* 4 (|b] — 1/2)* + (|| — 1/2)* + (|d| — 1/2)* . (5.10)

By hypothesis D? < 1/|h|?, so a € [0,1/2]. By this and our constraints on b, ¢ and d obtained
above, we see that the right hand side of Eq. (5.10) is less than 1 = |ht v|? (so that conclusion (i)
applies) unless a = 0 and b,c,d € {0,1}. In each of these cases, a = 0 implies that D? = 1/|h|?,
and (r'|v) can be read from Eq. (5.6). We obtain the following possibilities:

possibility value of h (r'|v) conclusion
b=c=d=0 1,14+ior2 0 (i)
b=1,¢=d=0 l1+ior2 h=1i (v) or (vi)

any other 2 271 (bi + ¢j + dk) (vi).

(The last column refers to the various cases listed in the statement of the theorem.)

14



It remains only to show that given a unit £’ of H with Re&’ = —1/2, there is another unit £
of H satisfying Eq. (5.9). If A = 1 or 2 then this is trivial: take £ =& + 1. If h = 1 +1 then we
solve Eq. (5.9) for &:

(1-1)¢&(1+1)
V22

The most straightforward way to show that £ is a unit of H is to simply evaluate the right hand
side of Eq. (5.11) for each of the eight possibilities ¢’ = (—1+i+j+k)/2. (What is really going on
here is that the units of H together with 271/ 2(1+1) generate the binary octahedral group, which
normalizes the binary tetrahedral group consisting of the units of 3.) O

E=|h? h iR 41 = +1. (5.11)

6. The reflection groups

This section is the heart of the paper: we will apply the results of Section 5 to find Lorentzian
lattices that are reflective. The most basic of our results is

Theorem 6.1. Suppose A is a positive-definite R-lattice which is spanned by its roots and has
covering radius < 1. Then L = A @ I, ; is reflective. O

(This follows immediately from Theorem 6.2 below.) The proof of such a theorem has two parts:
first that Reflec L acts with only finitely many orbits on the primitive null vectors in L and second
that the stabilizer in Reflec L of one such vector, namely p, has finite index in its stabilizer in
Aut L. The second part has already been proven, in Theorem 5.1. The first and more interesting
part of the argument proceeds by supposing v to be a primitive null vector in L and repeatedly
applying reflections to decrease the height of v. Theorems 5.2 and 5.3 assure us that we can find
height-decreasing reflections if v lies over a point of A@K sufficiently close to an element of A or to
any of various other points of A ® K. In particular, if the covering radius of A is small enough then
we may always find suitable reflections and this allows us to reduce the height of v indefinitely.
Since the details of Theorems 5.2 and 5.3 are quite complicated, conditions on A that allow us
to bring to bear the full force of these results are bound to also be complicated. The condition
defined below, that A be well-covered, is just a generalization of the requirement of Theorem 6.1
that A have covering radius 1.

There are two “tracks” through this section. The first deals with well-covered lattices and
the general theory, with details worked out for a few low-dimensional examples. This track yields
reflective lattices in C™! for n < 5 and in H™! for n < 3, and a detailed study of the reflection
groups of If;l for n < 4 and Igfl for n < 3. The second track treats in detail two high-dimensional
examples, 178’ ; and I gfl. This track begins with Lemma 6.8 and requires none of the earlier material
of the section except for Theorem 6.4. Furthermore, it does not require the use of Theorem 5.2.
The reader who wishes to know why these two lattices are reflective but is not interested in further
details need read only Lemmas 6.9 and 6.11, which assert that Ag and AJC are well-covered, and
then apply Theorem 6.2.

Suppose A is a positive-definite R-lattice. We define a family € (for “covering”) of closed balls
centered at various points of A ® R. If the union of these balls is all of A ® R then we say that A
is well-covered. The definition of € depends on R, and is given in Table 6.1.

The table should be interpreted as follows. A closed ball is a member of € just if for one of
the rows listed under R, it has the given radius and center, where A € A satisfies the condition in
the ‘condition’ column. If A is well-covered then a point of A @ R is called a C-hole if it lies in the
interior of none of the balls of C; the C-holes of a well-covered lattice obviously form a discrete set.
We say that A is strictly well-covered if it has no C-holes; that is, if the interiors of the balls cover
A®R.
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Table 6.1. The balls used to define the notion of a lattice being well-covered

The ring R (Radius)? Center Condition Root length(s)

g V3 A A2 =0(2) long
1 A A2 =1(2) short
1/2 AL+ A2 =1(2) short
1/4 A/2 A2 =1(4) short

& 1 A none long, short
1/3 AL A2 =2(3) long
1/3 A1 A2 =1(3) short
1/4 A/2 A2 =1(2) short
1/12 AO~1/2 A2 =1(6) short

H 1 A none long, short
1/2 A1 +i)! A2 =1(2) short
1/4 A/2 A2 =1(2) short

The last column of Table 6.1 indicates whether short or long roots of L = A @ Il (or
roots of both lengths) lie over the center of the ball. The verifications that there are such roots
is straightforward. For example, if R = & and A € A we can look for short roots of the form
r = (\;0,v), which would lie over A0~1. Our search will succeed if we can choose v € € so that
r? = 1. We may restate the condition r? = 1 as Re(0v) = (1 — A?)/2. Since the set of values taken
by the left hand side is %Z, as v varies over €, we can solve for v € € exactly when 1 — \? € 3Z,
that is, when A\? = 1(3). This sort of computation is the source of the entries in the ‘condition’
column.

Theorem 6.2. Suppose L = A @ II, 1 for some well-covered positive-definite R-lattice A.
(i) If no vector of A is fixed by every reflection of A then L is reflective.
(ii) If A is strictly well-covered then any two primitive null sublattices of L are equivalent under
Reflec L.

Proof: Suppose v is a primitive null vector of L that has minimal height in its orbit under
Reflec L, is not a multiple of p, and lies over £ € A®@R. If ¢ lies in the interior of any ball of € then
the image v’ of v under some reflection of L has ht (v) < ht (v), contradicting our hypothesis on
v. Here’s why: if a ball of € whose interior contains £ is centered at Ah~=! for A € A then there is a
root r of L lying over Ah~!. By applying Theorem 5.3 in the case of a short root, or Theorem 5.2
in the case of a long root, we see that there is another root r’ of L and a reflection in 7’ which
carries v to a vector of smaller height. If A is strictly well-covered then this shows that v cannot
exist, so every primitive isotropic vector of L is equivalent to one in the span of p. This proves (iz).

If A is well-covered but not strictly well-covered then we conclude from the argument above
that ¢ is a C-hole of A, and from the conclusions of Theorems 5.2 and 5.3 that for one of finitely
many pairs h, k € K there is a root 7’ of L of height h such that (r'|v) = k. Under the hypothesis
of (i), Theorem 5.1(iv) shows that the stabilizer of p in Reflec L has finite index in the stabilizer
in Aut L. Since the translations of L act with only finitely many orbits on the vectors of any given
norm and (nonzero) height, we see that after applying an element of Reflec L we may take r’ to be
one of some fixed finite set of roots. If 7’ is one of these roots then the conditions (r’'|v) = k and
v? = 0 together with the fact that v lies over a C-hole of A determine v to within finitely many
possibilities. Therefore Reflec L acts with only finitely many orbits on the primitive null vectors
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of L. This fact, together with the finite index of the stabilizer in Reflec L of one such vector, p, in
its stabilizer in Aut L, proves (7). a

Remark: If we were to restrict the definition of the covering € to only involve balls with centers
over which lie short roots of L (i.e., those entries in Table (6.1) with ‘short’ in the last column),
then we would obtain new definitions of ‘well-covered’ and ‘strictly well-covered’. The proof of (i)
shows that if A is strictly well-covered in this sense then Reflecy L acts transitively on the primitive
null lattices in L.

Corollary 6.3. Let A be any one of the R-lattices

G,2Y2G, DJ, D§, or E§  ifR=G,
&, 2,83, or D3(v/—3) itR=E, or
I, 2V23, H2, or EJL if R =H.

Then L = A @ 7%, is reflective. Unless A is &%, D3(v/=3), DI, H* or EJ', all primitive null
sublattices of L are equivalent under Reflec L.

Remark: The lattices appearing here are all described in Section 3. Theorems 6.6 and 6.7 give
much more precise information about Reflec L for A = &, €2, €3, H or H>.

Proof: The covering radius of G is 271/2, so G is strictly well-covered. The remaining Gaussian

lattices are all even and have covering radii 1, 1, (3/ 2)1/ 2 and 1, respectively, so they are also
strictly well-covered. The covering radii of the Eisenstein lattices are (1/3)Y/2, (2/3)'/2, 1 and 1,
respectively, so these lattices are well-covered and the first two strictly so. The Hurwitz lattices
have covering radii 27/2, 1, 1 and 1, respectively, so all are well-covered and H strictly so. In each
case the roots of A span A ® R, so no element of A is fixed by all reflections of A. Our conclusions
follow from Theorem 6.2. O

We can also apply the theorem when A = {0}, to deduce that Reflec IT 13?1 acts on KH?!
with finite covolume and that there is only one orbit of primitive isotropic lattices in II i}?l. A little
picture-drawing reveals that Reflec IT fl acts on the right half-plane (a copy of CH?!) as the triangle

group (2,6,00). One can also show that Aut Ilﬁl acts on CH! as (2,3,00) and its subgroup of
index 2 consisting of elements with determinant +1 is conjugate in GL2(G) to SLyZ. The group
Reflec IT 19 ; is generated by 3 biflections, which act by rotations by 7 around the three finite corners
of a quadrilateral in CH! with corner angles 7/2, 7/2, /2 and m/occ. See [16] for descriptions of
the groups (p,q,r) and other information. By adapting the argument of [1, Thm. 5.3()], one can
also show that Reflec Hffl acts on HH! = RH* as the rotation subgroup of the real hyperbolic
reflection group with the Coxeter diagram below. Note that the 6 outer nodes generate an affine
reflection group, so this strange-looking graph is just a special case of the usual procedure of
“hyperbolizing” an affine reflection group by adjoining an extra node.

We will now study in more detail the reflection groups of several Lorentzian lattices over &
and H. The reader may follow two paths. One requires (i)—(#i) of Theorem 6.4 below but then
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nothing else until Lemma 6.8. This path leads to our highest-dimensional examples, Reflec I% 1
acting on CH” and Reflec I acting on HH®. The other path requires (i) (iii’) of Theorem 6.4
and leads to detailed analyses of several low-dimensional examples, namely 1571 forn =2,3,4 and
Igfl for n = 2,3. Theorem 6.4 is a more specialized version of Theorem 5.1. As usual, the different
rings behave slightly differently.

Theorem 6.4. Suppose R = € or H, that A is a positive-definite selfdual R-lattice of positive
dimension that is spanned by its roots, and that Aut A is generated by reflections. Let L = A® 1l 13?1.
Then
(i) If R = € (resp. H) then Reflec L contains all (resp. at least a quarter) of the translations of
L. (If R = H then Reflec L contains Ty _g, and coset representatives for the translations of
Reflec L in those of Aut L may be taken from {Ty o, To i, To,j, Tox}-)
(ii) Reflec L contains a transformation acting trivially on A and on II 51 by left scalar multiplication
by any given unit of R.
(i) If R = & (resp. H) then the stabilizer of (p) in Reflec L coincides with (resp. has index at
most four in) the stabilizer in Aut L.
Furthermore, if A is spanned by its short roots then
(i") The conclusion of (i) holds with Reflecy L in place of Reflec L.
(ii") If R = H then the conclusion of (ii) holds with Reflecy L in place of Reflec L. If R = & then
Reflecy L contains a transformation acting trivially on A and on Hf’ 1 by the scalar w.
(iii’) If R = H then the conclusion of (iit) holds with Reflecy L in place of Reflec L. If R = &
then the stabilizer of (p) in Aut L is generated by the stabilizer in Reflecy L together with the
central involution of H18,1 (or alternately that of L).

Proof: (i),(i") The selfduality of A together with Theorem 5.1(7) show that for each root r of
A there exists z € ImK such that T, , € Reflec L. Since A is spanned by its roots, Eq. (4.3) shows
that for all A € A there exists z € ImK such that T) ., € Reflec L. Taking commutators of these
translations and using the selfduality of A we find by Theorem 5.1(4i) that for each z € R, the
central translation T o1y » lies in Reflec L. (This is where we use the hypothesis dim A > 0.) If
R = € then this yields all the central translations. If R = H then this yields the central translations
T0,bitcj+dx With b,c,d € Z and b = ¢ = d (2), a subgroup of index 4 in the group of all central
translations. (Coset representatives are T o, To,i. To,; and Tpk.) This proves (7). If the short roots
of A span A then the entire argument goes through with Reflecy L in place of Reflec L, because
for a short root r of A, the proof of Theorem 5.1(7) shows that there exists z € ImK such that
T, . € Reflecy L.

In the rest of the proof, unless otherwise specified, the term ‘scalar matrix’ will have a non-
standard meaning: an isometry of L fixing A pointwise and acting on I/ f?l by left-multiplication
by some unit of R. (Note that if R = H then there may be no concept of “left-multiplication by
scalars” on L.)

(7") We have Ty _g € Reflecy L by (i’). Let F be the transformation composed of Ty g
followed by (—w)-reflection in the short root (0;1, —w). It is obvious that F' acts trivially on A and
computation reveals that it acts on I fl by left multiplication by the matrix

(6 )

The square of this matrix is the scalar matrix w, which proves the claim in thecase R = €. If R = H
then Reflecy L contains the 8 matrices that are the images of F? under Aut K. (This is because
Aut H, acting on II fl, normalizes Reflec L even though it doesn’t act by H-linear transformations.)
These matrices generate the group of scalar matrices, proving the claim in the case R = H.
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(i) If we no longer assume that A is spanned by its short roots then all of the above goes
through with Reflec L in place of Reflecy L and the reference to (i") replaced by a reference to (7).
Therefore it remains only to show that if R = € then Reflec L contains all of the scalar matrices.
This follows because the biflection B in b = (0;1,1) fixes A pointwise and acts on HE 1 by the

matrix
0o -1
-1 0 ’

Observe that F'B is the scalar matrix —w, which generates the group of all scalar matrices.

(#i) By (i1), Reflec L acts transitively on the primitive vectors in (p). By (i), Reflec L contains
all the translations of L (or at least a quarter, if R = H), and hence the stabilizer of p in Reflec L
acts with only one orbit (or at most 4 orbits, if R = H) on the null vectors of L of height 1.
The simultaneous stabilizer in Aut L of p and one such, namely (0;1,0), is just Aut A, which is
generated by reflections by hypothesis. This proves (iii).

(#ii") Let G be the group generated by Reflecy L and the central involution of L; it is obvious
that G is normal in Aut L. Since Reflecy L contains the central involution of A, we see that GG
contains the central involution J of I 19?1. By the proof of (i), J = WF B where B is the biflection
inb=(0,...,0;1,1) and W denotes the scalar matrix w. Since WF' € Reflecy L, we see that G
is generated by Reflecy L and B, so G C Reflec L. We claim that G contains Aut A. Since A is
spanned by its short roots, A = R™ for some n, and we may introduce an orthonormal basis for A.
If n =1 then Aut A is generated by reflections in its short roots, proving the claim. If n > 1 then
it suffices to prove that G contains the coordinate permutations with respect to the chosen basis of
A. That is, we must show that G contains the biflections in vectors like x = (1,—1,0,...,0;0,0).
Since G is normal in Aut L and contains B, it suffices to show that x and b are equivalent under
Aut L. To see this, observe that T(1 .. 0,6/2 followed by F', followed by the scalar matrix —w,
followed by T(_11,0,...,0),0, carries = to b.

Repeating the argument of (iiz), replacing Reflec L by G C Reflec L and the references to (i)
and (4i) by references to (i) and (iz”), proves that the stabilizers of (p) in G and Aut L coincide.
If R = H then by (i1’) we have J € Reflecy L, so Reflecy L = G, proving (iii’). If R = & then (iii’)
follows from the several descriptions of GG given above. O

Remarks: The condition dim A > 0 is necessary; one can show that Reflec Hf 1 contains no
scalars except the identity. It is interesting to note that when R = 3 and A (of dimension > 0) is
spanned by its short roots then Reflecy L contains biflections such as B in long roots of L. This
follows from the fact that as in the proof of (i7), B may be written as a product of F' and a
scalar matrix. I suspect that in some cases, such as those studied in Theorem 6.7 below, Reflecg L
contains all the reflections of L.

Lemma 6.5. Ifr and r’ are short roots in a lattice over R = € or H and (r|r’) =1 then r and r’
are equivalent under the group generated by the reflections in them.

Proof: One checks that the (—w)-reflections R and R’ in r and 7’ satisty the braid relation
RR'R = R'RR'. (Because the Hermitian form is degenerate on the span of r and r’, one must
check that this relation holds by using Eq. (2.1), not by just multiplying matrices for the actions
of R and R’ on the span of r and ’.) Rewriting this as R 'RR’ = RR'R~! we see that R and R’
are conjugate in the group they generate, which implies the lemma. O

Remark: The proof suggests connections between the braid groups and complex reflection
groups. This connection was first observed in [15], and the braid groups play a central role in the
work of Deligne and Mostow [17], Mostow [21] and Thurston [23]. They are also important in work
of the author, J. Carlson and D. Toledo [2] on moduli of cubic surfaces.
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A useful tool for studying Fisenstein lattices L = A @ IT f ; with A selfdual is the reduction of
L modulo §. We write ¢ for the natural map ¢ : € — £/6€ = F3, and also for the natural map
q: L — L/LO; we write V for the Fz-vector space L/L6. The Hermitian inner product on L gives
rise to a symmetric bilinear form on V, given by (¢(v)|¢(w)) = ¢((v|w)). Since L is selfdual this
pairing is a nondegenerate bilinear form on V' and yields a natural homomorphism from Aut L to
H = Isom V', an orthogonal group over F3. There is a homomorphism from H to the set {41}
of nonzero square classes of 3, called the spinor norm map and characterized by the following
property: if v € V has nonzero norm then the spinor norm of the reflection in v is the square class
of the norm of v. We define the spinor norm of an element of Aut L to be the spinor norm of its
image in H. If v is a long (resp. short) root of L then the biflection (resp. either 6-fold reflection)
in r acts on V as the reflection in the image of r, and thus has spinor norm —1 (resp. +1). By
choosing an orthogonal basis for L we obtain an orthogonal basis for V' and then it is clear that
the central involution has spinor norm —1. (There is an orthogonal basis for L by Theorem 7.1.)

Theorem 6.6. Let R=E, A=E"and L=A& II{C’J.

(i) If n = 1 then Reflecy L acts with exactly 2 orbits of primitive null vectors, represented by +p.
If n = 2 or 3 then Reflecy L acts transitively on the primitive null vectors of L.

(ii) If n =1, 2 or 3 then Aut L = Reflec L = Reflecy L x {£I}.

Proof: For n = 1 or 2, &" is strictly well-covered in the sense of the remark following The-
orem 6.2 and so Reflecy L acts transitively on the primitive null lattices in L. Now suppose
n = 3. Suppose v € L is a primitive null vector not proportional to p and of smallest height
in its orbit under Reflecq L. Since the covering radius of €% is 1, Theorem 5.3(ii) implies that
v is orthogonal to a short root of height 1. By applying a translation we may suppose that
this root is r; = (0,0,0;1, —w). Taking ro = (0,0,1;0,1) and r3 = (0,0,1;0,0) we see that
(ri]ra) = (ra|rs) = 1, so by Lemma 6.5, 1 is equivalent to 73 under Reflecy L. Thus v is equivalent
to an element of 73, which is a copy of €2 @ Hfl. Applying the n = 2 case, we see that for n = 3,
Reflecy L acts transitively on the primitive null sublattices of L.

By considering the spinor norm, we see that —I ¢ Reflecy L. The transitivity above together
with the equality (Theorem 6.4(7i")) of the stabilizers of (p) in Aut L and Reflecy L x {£1} proves
that Aut L = Reflecy L x {1} and that Reflecy L is the kernel of the spinor norm map. By
considerations of the spinor norm, no biflection in a long root of L lies in Reflecy L. This proves
(i)

From the above, we conclude that any primitive null vector of L is equivalent under Reflecq L
to one of +p. If n > 1 then +p are equivalent, because the central involution followed by biflection
in a long root of A exchanges them and has spinor norm 1. If n = 1 then 4p are not equivalent, or
else the fact that the stabilizers of p in Reflecy L and Aut L coincide would prove Reflecy L = Aut L.

([l

Remark: The quotient by Reflecq I, 48’ 1 of CH* minus the union of the hyperplanes orthogonal

to short roots of I jE ; may be identified with the moduli space of smooth cubic surfaces over C.

The analogous construction with 13871 in place of [ f’l yields the moduli space of smooth genus 2
curves over C. One can also construct the (fine) moduli space of marked smooth cubic surfaces by
taking the quotient of CH* (minus the same hyperplanes as above) by the congruence subgroup
of Reflecq I jﬁ 1 associated to the prime 6 € €. The quotient of Reflecy I 48’ ;1 by this normal subgroup
is the Fg Weyl group, also known as “the group of the 27 lines on a cubic surface”. See [2] for
details.

Theorem 6.7. Let R = H, A =H" forn =1o0r2, and L = A & Ilicl. Then Reflecy L acts
transitively on the primitive null vectors of L and has index at most 4 in Aut L.
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Proof: We observe that Reflecy L acts transitively on primitive null lattices in L. For n = 1
this follows from the fact that A = H is strictly well-covered in the sense of the remark following
the proof of Theorem 6.2. For n = 2 it follows from an argument similar to the n = 3 case of
Theorem 6.6. That is, the covering radius of A = H? is 1, so if v € L is primitive, isotropic
and of smallest height in its orbit under Reflecy L then by Theorem 5.3(7i) we see that v is either
proportional to p or orthogonal to a short root r; of height 1. In the latter case, after applying a
translation of Reflecy L, courtesy of Theorem 6.4(i"), we may take r = (0,0;1,z — w) for x = 0,
i, j or k. In any of these cases, upon taking ro = (0,1;0,1) and r3 = (0,1;0,0) we have (ry|re) =
(ro]rs) = 1. By Lemma 6.5, v is equivalent under Reflecy L to an element of 7“3L. Since 7‘3l is a copy
of '@ Il ffl, the transitivity follows from the case n = 1.

Using Theorem 6.4(4i’), the transitivity on primitive null vectors follows. The bound on the
index of Reflecy L in Aut L follows from Theorem 6.4(74i’). O

Now we move on to higher-dimensional examples—we will construct a group acting on CH”
and another acting on HH®. These arise from our basic construction by taking A = Ag or AJL

Lemma 6.8. Suppose v,71,...,7m € K" @K Iie over €, M1, ..., Am € K" respectively. Suppose
v? = 0, that (r;|v) = 0 for all i, and that the vectors \; — £ are linearly independent in K". Then
the images of the r; in v /(v) are linearly independent.

Proof: We may obviously replace v and the r; by any scalar multiples of themselves and so
suppose that they have height 1. Thus v = (¢;1,7) and r; = (A\;;1,7) where the question marks
denote irrelevant and possibly distinct elements of K. Let 1" be the translation carrying v to
(0;1,0), so T'(r;) = (N\; — £;1,0). (The last coordinate vanishes because (T'(r;)|Tv) = 0.) Since the
image of T'(r;) in (Tw)*/(Tv) may be identified with its first coordinate, namely \; — ¢, the images
of the T'(r;) in (Tw)*/(Tv) are linearly independent. The theorem follows immediately. O

Lemma 6.9. A§ @R is covered by the closed balls of radius 1 centered at points of A§, together
with those of radius 371/2 centered at points N0~ with A € A§ and \> = 1(3). In particular, A§
is well-covered.

Proof: Section 7 of [13] defines a linear “gluing map” ¢ : %Ag/Ag — %Ag/Ag with the
property that the Leech lattice Aoy, scaled down by 2!/2, is the real form of the lattice of vectors
(x1,22) € (%A§)2 satisfying g(x1 + A§) = z2 + A§. Identifying A§ with the set of such (z1,x2)
with 2o = 0, we see that the only points of 271/2A,4 at distance < 1 from Ag ® R are those
in A§ and those of the form (210!, 2,60~') with x5 a minimal vector of A§ (a long root). The
definition of g (see [13]) shows that 22 = 1(3) if and only if there is a long root zo of A§ such that
(w19*1,x29’1) € 271/2A,,. By [10], the covering radius of 2127, is 1, so the intersections of
the balls of radius 1 centered at the points of A§ and at the points (x107%, 207?) with 2?2 = 1(3)
and 73 = 2 cover A‘g‘ ® R. Computing the radius of the intersection of a ball of the second family
with A§ @ R, we obtain the lemma. O

Theorem 6.10. Let A = A§ and L = A @ IIEl s 178,1-

(i) If v € L is primitive, isotropic and not equivalent to a multiple of p under Reflecy L, then
vl /(v) = €S,

(ii) Aut L = Reflec L. In particular, L is reflective.

Proof: (1) Suppose that v is a primitive isotropic vector of smallest height in its orbit under
Reflecy L. Suppose v is not a multiple of p, so that it lies over some ¢ € A ® R. By the minimality
of its height and Theorem 5.3, ¢ lies at distance > 1 from each lattice point A € A and at distance
> 371/2 from each A\@~! with A\ € A and A\*> = 1(3). By Lemma 6.9 the set S of such points in
A @ R is discrete. Let pq,...,u, be the elements of A with (¢ — ,uz-)2 =1 and let vq,...,v,, be
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those vectors of the form A\0~! with A € A and A\? = 1(3) such that (¢ — v;)?> = 1/3. Over each p;
(resp. v;) there is a short root of L, say r; (resp. s;), of height 1 (resp. ). By Theorem 5.3(i1),
we may suppose that the r; and s; are orthogonal to v. Because S is discrete the vectors p; — ¢
and v; — £ span A @ R. By Lemma 6.8 this implies that among the images of the vectors r; and s;
in v /(v) are 6 short roots that are linearly independent over €. Since v1/(v) is positive-definite,
it follows that v /(v) = &S,

(#i) Follows from the transitivity on primitive null sublattices that are orthogonal to no short
roots (such as (p)) and Theorem 6.4(iiz). O

We now study the quaternionic lattice 1, 59,{1- The analysis is surprisingly similar to our study
of 178’1. In particular, Lemma 6.11 below is very similar to Lemma 6.9. Section 5 of [11] describes
an embedding of the real form BWi4 of 21/2AZ{ into the Leech lattice Aog. (Up to isometry of Aoy,
there is only one embedding.) When we refer to concepts involving Ass while discussing AJ¢, we
implicitly refer to this embedding.

Lemma 6.11. AJ'®R is covered by the closed balls of radius 1 centered at points of AJ¢ together
with those of radius 2-1/2 centered at points A(1 +1)~! with A € AJ* of odd norm. In particular,
A3t is well-covered. Any point of AJ* ® R not in the interior of one of these balls is a deep hole of
2_1/2A24.

Proof: The orthogonal complement of AJ¢ in 2-1/2Ay, is a copy of the Eg lattice. Properties
of the embedding are described in [11] and include the following. If (z,y) € (AJ' ® R) x (Fg @ R)
lies in 27/2Aq4, then y € %Eg and hence has norm n/2 for some nonnegative integer n. We write
B(z,y) for the ball of radius 1 with center (z,y) € 27/2A4,. Only if the norm of y is 0 or 1/2
does the interior of B(z,y) meet AJ' @ R. Those z for which (x,y) € 27/2Ay, for some y of
norm 1/2 are exactly the deep holes of AJ'. By Theorem 3.1, the set of such x coincides exactly
with { A(141)! } A €AY, A% =1(2) }. For such (z,y), the ball B(z,y) meets Aj* @R in a ball of
radius 271/2. The theorem follows from the fact [10] that the covering radius of 2-1/2Ay, is 1. O

The deep holes of 271/2A54 played a role in our study of L& = Ag EBUfl in Theorem 6.10. We
showed there that if v is a primitive null vector of L€ lying over such a hole in A§ ® R, then there
are short roots of v*/(v) associated to certain elements of A§ and A§0~! near the hole. Given
the similarity between Lemmas 6.9 and 6.11, one should expect something similar to happen in
the study of L7 = AJ' @ Hffl. Indeed it does, but because the conclusions of Theorem 5.3 for
short roots of height 1 + i in Hurwitz lattices are slightly weaker than those for short roots of
heights 1 and 6 in Eisenstein lattices, the arguments are more complicated. Lemma 6.13 provides
the necessary technical information about the deep holes of Aoy, The language of affine Coxeter-
Dynkin diagrams is the natural way to discuss these deep holes; see [10] for background. Since the
real form BWig of 21/2 AJ' is the sublattice of Agy fixed by an involution, we will study the actions
of involutions on affine diagrams.

If A is an affine Coxeter-Dynkin diagram each of whose components has type A,,, D,, or E,,
then an affine simple root system of type A is a set of vectors v; of norm 2 in real Euclidean space,
one for each node of A, satisfying (v;|v;) = 0, —1 or —2 according as the corresponding nodes of A
are disjoined, joined or doubly joined. (The last case occurs only for the affine diagram A;, where
the doubly joined vectors are each others negatives.) We usually identify the nodes of A with the
vectors v;, so we may speak of vectors being disjoined or of nodes being linearly independent. Each
component X,, has n+ 1 nodes and spans an n-dimensional space; any n of its vectors are linearly
independent. The spaces spanned by distinct components are orthogonal.

Lemma 6.12. Suppose A is an affine simple root system spanning a FEuclidean space E and that
¢ is an isometry of E permuting the vectors of A. Let A (resp. B) be the number of orbits of ¢

22



on the vertices (resp. components) of A. Then A — B is the dimension of the space F' of points
fixed by ¢. Furthermore, if ¢ has prime order p then

pdimF —dimFE = (Py — Po)(p—1) , (6.1)
where Py (resp. Pc) is the number of vertices (resp. components) of A preserved by ¢.

Proof: Since the vectors v; of A span E, ¢ is determined by its action on A. Let M be the
order of ¢ and let 7 denote the projection z — - Z;‘il ¢’ (z) of E to F. Naturally, F is spanned
by the vectors m(v;); there are A distinct such vectors. Let the minimal affine subdiagrams of
A preserved by ¢ be denoted Aq,...,Ap. (Such a diagram is just a union of components of A
permuted cyclically by ¢.) Let F; (for 1 < j < B) be the intersection of the span of A; with F. If
J # k then A; is orthogonal to Ay and thus F; and Fj, are also orthogonal. Since each vector 7(v;)
lies in some F};, we see that F' = @leF . Therefore the lemma, holds if it holds with A replaced
by each A; in turn.

It now suffices to prove the lemma under the hypothesis that ¢ acts transitively on the com-
ponents of A. Each of the vectors 7(v;) has the form ﬁ ZjeJi v; for some ¢-orbit J; of nodes
of A that meets each component of A. If v; and v; are not ¢-equivalent then the sets J; and J;
are disjoint. In order for some subset of the 7(v;) to be linearly independent, the union of the
corresponding J; must contain an affine diagram. Since such a diagram would be a component
of A and ¢ permutes the components transitively, the union of the J; would have to be all of A.
Therefore there is at most one linear dependence among the m(v;). There is at least one linear
dependence because the vectors of any given component of A are dependent and therefore their
images under 7 are also. (Indeed, some of the 7(v;) might vanish, as happens when A is an A;
diagram and ¢ is the nontrivial automorphism.) Therefore F' has dimension A —1 = A — B.

Now suppose ¢ has prime order p. If A has C' components then it has C' 4+ dim F vertices.
Then B = Pc + (C — Pc)/p and A = Py + (C' + dim £ — Py)/p. Arithmetic proves Eq. (6.1). O

Lemma 6.13. Let ¢ be a deep hole of 2=1/2Ay, that lies in AJ' @ R. Then there are at least 5
vertices v; of £ that lie in AJ¢ such that the vectors v; — £ are linearly independent over R.

Proof: In this proof we’ll scale everything up by 2'/2, so £ is a deep hole of Ay that lies in
BWis®@R. By [10], if we take coordinates centered at ¢ then the vertices in Ay of the hole form an
affine simple root system spanning R?*. Let A be the associated Coxeter-Dynkin diagram, which
is a union of affine diagrams of types A,, D,, and E,. The space BWi5 ® R is the fixed space of
an involution ¢ of Agy. Since ¢ fixes ¢, it acts on A. Let F', Py and Po be as in Lemma 6.12.
Then we have 2-16 =24 + Py — Pg, so Py — Pc = 8. This shows Py > 8; since Py > 0 we have
Pe > 0 and so we actually have Py > 8.

Therefore there are Py, > 8 vertices of A fixed by ¢, which is to say, lying in BW3g. The
number of independent linear conditions satisfied by a set S of vertices of A equals the number of
components of A all of whose vertices lie in S. Since each affine diagram has at least 2 vertices,
there are at most Py /2 conditions, so among the vertices of ¢ lying in BWj¢ there are at least 5
that are linearly independent over R. The lemma follows because we took ¢ as the origin. O

Remark: The proof shows that any deep hole of Aoy that lies in in BWis ® R has at least 9
vertices in BWig. This is the best possible result, because there are holes of type Eg in BWig; the
involution ¢ fixes one Eg diagram and exchanges the other two.

Theorem 6.14. Let A=A and L=A® Hljfl = Ig’cl.
(i) If v € L is a primitive isotropic vector not equivalent under Reflecy L to a multiple of p then
vt /(v) contains at least two linearly independent short roots.
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(ii) The index of Reflec L in Aut L is at most 4. In particular, L is reflective.

Proof: (i) This is very similar to the proof of Theorem 6.10(). Suppose that v is a primitive
isotropic vector of L of smallest height in its orbit under Reflec L. Suppose v is not a multiple of
p, so that v lies over some ¢ € A @ R. By Theorem 5.3, ¢ lies at distance > 1 from each lattice
point A € A and at distance > 271/2 from each point A(1 + 1)~ with A\ € A and \*> = 1(2). By
Lemma 6.11, £ must be a deep hole of 271/2A,4. By Lemma 6.13 there are 5 vertices wq, ..., ws of
the hole that lie in AJ* such that the vectors w; — £ are linearly independent over R. Since there
are 5 of them, we may suppose that wy; — ¢ and ws — £ are linearly independent over H. Because
wi,we € AJY, There are short roots 7y and 75 of L of height 1 lying over them. Since their heights
are 1, Theorem 5.3(#1) assures us that 7 and ro may be chosen orthogonal to v. By Lemma 6.8,
the images of 71 and ry in v /(v) are linearly independent, proving (7).

(#i) Follows from Theorem 6.4(i7) and the fact (i) that Reflec L acts transitively on the
primitive null lattices (such as (p)) in L that are orthogonal to no short roots. O

Remark: In light of the fact that Reflecy I;?fl contains the biflections in some long roots (see
the remark following the proof of Theorem 6.4), it is possible that Reflec L = Reflecy L.

7. Enumeration of selfdual lattices

As we explain below, the orbits of primitive isotropic lattices in the Lorentzian lattice I,ﬁm are
in natural 1-1 correspondence with the equivalence classes of positive-definite selfdual lattices of
dimension n over R. This means that one may classify such lattices by studying Aut 12}%1. Since
we did just that in Section 6, for various R and n, we can now provide geometric proofs of such
classifications. We begin with an analogue of a result well-known for lattices over Z.

Theorem 7.1. An indefinite selfdual lattice L. over R = € or H is characterized up to isometry
by its dimension and signature. An indefinite selfdual lattice L over R = §G is characterized up
to isometry by its dimension, signature, and whether it is even; if L is even then its signature is
divisible by 4.

Proof: First we show that L contains an isotropic vector. If R = H, or if dim L > 2, then
the real form of L ® Q is an indefinite rational bilinear form of rank > 4, so Meyer’s theorem [19,
Chap. 2] asserts the existence of an isotropic vector. If dim L = 2 and R = G or €, then we consider
the 2 x 2 matrix of inner products of the elements of a basis for L. This may be diagonalized by
row and column operations over R @ Q to a diagonal matrix [a, —a~!] with a € Q. (Each term is
real because the matrix is Hermitian, and each determines the other because the determinant is
—1.) Then the vector (1,a) is isotropic. Having obtained an isotropic vector in L @ QQ, we may
multiply by a scalar to obtain an isotropic vector of L.

If L is odd then the proof of Theorem 4.3 in [19, Chap. 2] applies, and L = Ig%m for some n
and m. This completes the proof of the first claim, since any selfdual lattice over & or H is odd:
if v,w € L satisfy (v]w) = w then v?, w? and (v + w)? cannot all have the same parity. Existence
of such v and w is assured by the selfduality of L. This also proves that an odd indefinite selfdual
Gaussian lattice is characterized by its dimension and signature.

One may construct lattices N from an odd Gaussian lattice M by considering the sublattice
M¢€ consisting of the elements of M of even norm, and considering the 3 lattices N such that
M! C N C M,. When M is I7,, then N may be chosen to be II{,. Now consider an indefinite
even selfdual G-lattice L. We know that L contains an isotropic véctor, and as in [19] there is a
decomposition L = A @& IIE 1- We see that L arises from applying the construction above to the

odd selfdual lattice A @ 119,1- Since A @ 119,1 is isomorphic to I3 ,,, with n and m determined by the

,m»
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dimension and signature of L, is is clear that L can be constructed by applying our construction

to IS m- No even lattices arise unless n —m = 0(4), when two isometric ones do. O

Special cases of Theorem 7.1 are I7 L2 AE EBﬂl ; and I6 L2 AT EBIIl 1, which are the lattices
studied in Theorems 6.10 and 6.14. Theorem 7.1 also prov1des the correspondence mentioned
above: if V is a primitive isotropic lattice in IX n41,1 then it is easy to check that V+/V is an
n-dimensional positive—deﬁnite selfdual lattice. Every such lattice A arises this way, because we
may write I} 11 2 AS I1 1 and I i1 contains isotropic lattices. Furthermore, if V' and V' are

primitive isotropic lattices in IX e and VE/V 2V +/V" then one may find an isometry of IX 11
carrying V to V’. This provides a one-to-one correspondence between orbits of primitive isotropic
lattices of IX w1, and selfdual positive-definite lattices in dimension n. Similarly, the orbits of

primitive isotropic lattices of IT5 n+1,1 correspond to even positive-definite selfdual Gaussian lattices
of dimension n.

Theorem 7.2. There are exactly two positive-definite selfdual E-lattices in dimension 6, namely
A§ and 8. There are exactly two positive-definite selfdual H-lattices of dimension 4, namely A}
and JH*.

Proof: In light of the correspondence between selfdual lattices over & and orbits of primitive
isotropic lattices in Iﬁ’l, to prove the first claim it suffices to show that if V' is such a lattice then
V+/V is isomorphic to one of A§ and 6. This follows from Theorem 6.10(4).

Before proving the second claim, we show that the only positive-definite selfdual H-lattice of
dimension 2 is H?2. This follows from the correspondence between such lattices and the primitive
null sublattices of Igfl and the fact (Theorem 6.7) that all such sublattices are equivalent. Now
suppose that A is a positive-definite selfdual H-lattice of dimension 4. By the correspondence
between such lattices and primitive null sublattices of Ig’{l we know that A = V1/V for some
primitive null lattice V in I, 5 L 2 AT @ I . By Theorem 6.14(i), either A = AJ¢ or else A contains
two linearly independent short roots 71 and ro. In the latter case we observe that in a positive-
definite integral lattice any two short roots are either proportional or orthogonal, so 7y L 5. Thus
their span S in A is a copy of H?, and their orthogonal complement S+ is a selfdual H-lattice of
dimension 2. By the above, St =2 H?so A = S @ S+ = K4 O

The theorem implies that the only positive-definite selfdual E-lattices of dimension n < 6 are
€™ and A§ and that the only such H-lattices of dimension n < 4 are A’ and H". Similarly,
Theorem 6 3 shows that 17, 591 =~ E9 @ I 19 , contains only one orbit of primitive isotropic lattices,

SO Eg9 is the only 4-dimensional even positive-definite selfdual G-lattice.

These results have been obtained before but only by computational means. Feit [18] found
examples of many positive-definite selfdual E-lattices. He derived and used a version of the mass
formula to verify that his list was complete for dimensions n < 12. Conway and Sloane [13, Thm. 3]
provide a nice proof of this classification in dimensions n < 6 based on theta series and modular
forms. (Their proof does not apply for 6 < n < 12: in the second-to-last sentence of the proof,
“12” should be replaced by “77.) Although selfdual G-lattices have not been tabulated, it would
be easy (and boring) to enumerate them through dimension 12 by using the fact that the real form
of a selfdual G-lattice is selfdual over Z. Selfdual lattices over Z have been extensively tabulated;
see [14, Chap. 16] and [5]. An enumeration of positive-definite selfdual H-lattices for dimensions
n < 7 has recently been completed by Bachoc [3] and for n = 8 by Bachoc and Nebe [4]. These
enumerations are based on a generalization of Kneser’s notion of “neighboring” lattices, together
with a suitable version of the mass formula.

8. Comparison with the lists of Mostow and Thurston
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In this section we justify the word “new” in our title, by showing that our “largest” three reflection
groups do not appear on the lists of Mostow [22] and Thurston [23]. Deligne and Mostow [17] and
Mostow [21] constructed 94 reflection groups acting on CH™ for various n = 2,...,9 by considering
the monodromy of hypergeometric functions. Thurston [23] constructed the same set of groups
in terms of moduli of flat metrics (with specified sorts of singularities) on the sphere S2. We will
sometimes refer to these groups as “the monodromy groups”. We show here that none of the
groups Reflec It | (n > 4) or Reflec I, 7 411 (n > 1) appear on their lists. In particular, our groups
Reflec I% 1, Reflec I f’ ; and Reflec II 59 ; are new. According to Conjecture 9.1 and the commentary
following it, the lattices I,f’l (n < 13) and H49n+1,1 (n < 2) are reflective; if this is correct then
the reflection groups of these lattices are also new. We will also identify Reflec I?(i ; with one of the
monodromy groups. We leave open the question of whether our other groups appear on their lists
and also the question of the commensurability of our groups and theirs.

We write G for Reflec L where L is one of the lattices IS (n > 4) or an-H,l (n>1). We
will show that each monodromy group that acts on CH"” for n > 4 is either cocompact or contains
a primitive reflection of order 3 or 4. We will also show that G contains no such reflections, so
G cannot be a monodromy group. (A reflection is primitive if it is not a power of a reflection of
larger order.) It is easy to identify all the reflections of L (Lemma 8.2), but to compare G with the
monodromy groups we must also consider elements R of G that are not reflections of L but still act
on CH" as reflections—such an R differs from a reflection of L by a complex scalar of norm one. To
see that this is a nontrivial issue, consider Aut II 19 1- The subgroup of elements of determinant one
is conjugate to SLy Z and hence contains an element acting on CH' as a triflection. This happens
despite the fact that (by Lemma 8.2) the only reflections of IIE , are biflections. We deal with
this issue by calling a reflection of C" an honest reflection and a reflection of CP™~! a projective
reflection. This distinction requires a more careful definition of a primitive reflection. If H is a
group acting on C" (resp. CP"~1) and R € H is an honest (resp. projective) reflection, then
we say that R is primitive in H if it is not a power of an honest (resp. projective) reflection of
H of larger order. Our first lemma assures that the behavior of ng’ , discussed above is a low-
dimensional phenomenon, and gives a condition for a projective reflection in G to “come from” an
honest reflection.

Lemma 8.1. Suppose M is an n-dimensional lattice over R = € or G and that R is an element of
Aut M whose action on CP™! is a projective reflection of order m < n. Then R differs by a unit
of R from an honest reflection of M.

Proof: Since R acts on CP"! as a projective reflection, it has two distinct eigenvalues A
and X\, with one (say A) having multiplicity n — 1. Furthermore, since R™ preserves M and acts
trivially on CP"~!, we see that there is a unit o of R such that A™ = X'™ = «. The characteristic
polynomial of R is (z — A\)"~(z — X); since R € GL,, R, the coefficient of each power of z must lie
in R. Considering the coefficients of 2"~ and " ™! we find that

n—1 n—1\,

< 1 >/\ +< 0 >/\ =y and
<n1>Am+1+<n1>/\/Am:Z

m+ 1 m

for some y, z € R. Because \™ = a € R, the second equation reduces to a linear equation in A and
M. For n > m this is a nonsingular system of equations, so A\, \’ € R @ Q. Since A\, X" are roots of
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unity they must actually lie in R. Then A™'R € Aut M has eigenvalues 1 (with multiplicity n — 1)
and A\~1), completing the proof. O

Now we show that the only honest reflections of a selfdual lattice are the obvious ones; the
result is well-known for lattices over Z.

Lemma 8.2. Any honest reflection R of a selfdual lattice M over R = & or G is either a reflection
in a lattice vector of norm +1 or a biflection in a lattice vector of norm +2.

Proof: By considering the determinant of R we discover that its only nontrivial eigenvalue
is a unit of R, so M contains an element of the corresponding eigenspace, so R is a reflection
in some lattice vector v. Taking v to be primitive, every vector in the complex span of v lies in
the R-span of v. (This uses the fact that R is a principal ideal domain.) Furthermore, by the
selfduality of M, there exists w € M satisfying (v|w) = 1. Then R(w) = w — v(1 — «)/v? and so
w— R(w) = v(1 —a)/v? lies in M. Therefore (1 —«)/v? € R. Unless a = —1 this requires v? = +1
and if @ = —1 then it requires that v? divide 2. O

Theorem 8.3. The image of Aut L in the isometry group of complex hyperbolic space contains
no primitive projective reflection of order 3 or 4.

Proof: If R € Aut L acted on hyperbolic space as a projective reflection of order m = 3 or 4,
then because dim L > m we see by Lemmas 8.1 and 8.2 that R differs by a unit from a reflection in
a root r of L. Since R acts as a reflection on hyperbolic space, r? must be positive. Since m # 2,

r2 must be 1. If L = II], 41,1 then this is impossible because even lattices contain no short roots.

If L= ;31 then we must have m = 3, and then there is a 6-fold reflection in r whose square acts
on hyperbolic space as R, showing that R is not primitive as a projective reflection. O

Now we will return to the monodromy groups and find primitive reflections in them. We
will discuss them in Thurston’s terms; here is a sketch of his construction. Let n > 4 and let
a = (aq,...,a,) be an n-tuple of numbers in the interval (0,27) that sum to 47. Let P(a) be the
moduli space of pairs (p,g) where p is an injective map from {1,...,n} to an oriented sphere S
and g is a singular Riemannian metric on S? which is flat except on the image of p, with p(i) being
a “cone point” of curvature ;. (We denote p(i) by p;.) Two such pairs are considered equivalent if
they differ by an orientation-preserving similarity that identifies the corresponding points p; with
each other. This moduli space is a manifold of real dimension 2(n—3) and admits a metric which is
locally isometric to CH™ 3. Let H be the group of elements o of the symmetric group S,, satisfying
Qg = a; for alli =1,...,n. Then H acts by isometries of P(«), by permuting the points p;. We
denote the quotient orbifold by C(«) and its metric completion by C(«). The fundamental group
of P(a) is the pure (spherical) braid group on n strands, and the orbifold fundamental group of
C'(a) is the subgroup of the full (spherical) braid group the maps to H under the usual map from
the braid group to the symmetric group.

If the a; satisfy certain combinatorial identities then C(a) turns out to be the quotient of
CH™ 3 by a reflection group I'(a). There are only 94 choices for a (with n > 5) satisfying these
conditions, and the corresponding I'(a) are the monodromy groups. The points of C(a)~ C()
are the images of the mirrors of certain reflections of I'(«). One can figure out the orders of the
primitive reflections associated to these mirrors by finding the “cone angle” at each generic point
of C'(a) \ C(a): if the cone angle is 2 /m then the corresponding (primitive) projective reflections
have order m. (This cone angle should not be confused with the cone angles at the points p; € S2.)
The generic points of C'(a)~ C(a) are associated to “collisions” between pairs of points p; and
p; on S? for which a; + a; < 2. We quote Thurston’s Proposition 3.5, which provides a way to
compute the cone angles at these points of C(a) \ C(«).
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Proposition 8.4. Let S be the stratum of C(ay, ..., a,) where two cone points of curvature a;
and «a; collide. If o; = «j then the cone angle around S is m — «;; otherwise it is 2m — a; — aj. O

For example, take o to be the 10-tuple (%’T, %’T, . %,5: 5,5, 5,5, 5), which is number 13 on

Thurston’s list and number 4 on Mostow’s. Then at the singular strata of C'(a) where two cone

points of curvature %’r (resp. two of curvature %, resp. one of each curvature) collide, the cone
angle is 7 — 28 = Z (resp. 7 — % = 2%, resp. 2m — 2X — Z = 7). We deduce that I'(e) contains

primitive projective reflections of orders 6, 3 and 2.

Theorem 8.5. FEach of the monodromy groups that acts on CH" =3 for n > 7 is either cocompact
or contains a primitive projective reflection of order 3 or 4.

Proof: Using Proposition 8.4 and the list of n-tuples a provided in [22] or [23], it is easy
to compute the cone angles at all the generic points of C'(a) \ C(a). (The author wrote a short
computer program to do this, and also performed the computation by hand.) The only one with
n > 7 for which none of the cone angles are 27 /4 or 27 /3 is number 50 on Thurston’s list (number 21
on Mostow’s). According to Thurston’s table, I'(«) is cocompact for this choice of a. O

From Theorems 8.3 and 8.5 we immediately deduce

Theorem 8.6. If L is IS, (n >4) or H49n+1,1 (n > 1) then Reflec L does not appear among the
94 monodromy groups. O

We close this section by sketching a proof that Reflec 1387 1 is one of the monodromy groups it
is the group I'(a) with o = (%’r %’r, %’T, %’r, 27”, %’T), which is number 1 on Thurston’s list and
number 23 on Mostow’s. Because all the «; are equal, the orbifold fundamental group of C'(«)
is the spherical braid group Bg on six strands. A standard generator for Bg, braiding two points
p; and p;,1, corresponds to a loop in C(a) encircling the singular stratum S of C(a) associated
to a collision between p; and p;y1. Since the cone angle at S is 7/3 we find that the standard
generators map to 6-fold reflections. This fact, together with the braid relations and the fact that
the image of Bg is not finite, specifies the representation uniquely up to complex conjugation. The
five standard generators may be taken to map to (—w)-reflections in short roots of I?i 1, two of
these being orthogonal if the corresponding braid generators commute and having inner product
+1 otherwise. One may then use the techniques of Sections 5 and 6 to show that the image of Bg
is all of Reflecq I:f 1. which has the same projective action as Reflec I?i 1~ The arguments we have

sketched here concerning the braid group representation are carried out in detail in [2].

9. Comments

The Leech lattice plays an interesting role in hyperbolic geometry. Conway [9] showed that its spe-
cial properties allow a remarkably simple description of the symmetry group of the real Lorentzian
lattice IIQZ571. In Lemmas 6.9 and 6.11, we showed that it also “explains” our best examples,
through embeddings of the Coxeter-Todd and Barnes-Wall lattices. We note that Borcherds [7,
Sect. 3] used the same embeddings to produce interesting real reflection groups acting on RH!3
and RH'7.

There are a number of interesting Eisenstein lattices besides " and A§, but unfortunately
most seem unsuitable for our purposes. The Dy, Eg, and Eg root lattices are E-lattices, but at the
smallest scale at which they are integral, they have minimal norm 3 and covering radii (3/2)/2,
21/2 and (3/ 2)1/ 2,50 Theorem 6.1 doesn’t apply. There are also complex and quaternionic forms
of the Leech lattice (see [27] and [28]), but they also have large covering radii. I do not know
whether any of these lattices are well-covered. (Note also that the groups of the complex and
quaternionic Leech lattices contains no reflections.)
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It would be nice to understand the groups G generated by reflections in the short roots of
L = 178’ , or Igfl. The transitivity of G on primitive null lattices in L that are orthogonal to no
short roots of L proves that (Aut L)/G is the image of the stabilizer of (p), where p is a primitive
null vector corresponding to A§ or AJ'. One can show that the central translations (relative to
the decomposition A§ @ Hls’l or AJ' @ Hl}fl of L) of G have finite index in those of Aut L. This
implies that (Aut L)/G is virtually free abelian (possibly finite). We note the similar behavior
of the integer lattices 19271 and IIQZE,J. That is, Reflecy Ig’l acts transitively on the primitive null
sublattices orthogonal to no short roots, and

Aut Ig’l/(Reﬂeco I&l x {£1}) = Eg: Aut Eg ,

where the right hand side indicates a semidirect product of the additive group of Fg by Aut Eg.
Similarly, Reflec H2Z571 acts transitively on the primitive null sublattices orthogonal to no roots at

all, and
Aut 1135, /(Reflec IT5; | x {£1}) = Ayy: Aut Agy .

It is natural to wonder whether I;g’ ; and 7, gfl behave similarly.
We close with a conjecture that there are arithmetic complex and quaternionic hyperbolic
reflection groups in dimensions considerably higher than we have so far considered:

Conjecture 9.1. The lattice I§+1,1 is reflective if and only if each positive-definite selfdual R-
lattice A of dimension n has finite index in the span of its roots.

Inspiration for the conjecture comes from the real case, which has been exhaustively studied
(see for example [24], [26], [12], [6]). Namely, the groups of the Lorentzian lattices I, ; contain
reflection groups of finite index for n < 18, and the failure of this in higher dimension is associated
with the existence of selfdual Z-lattices of dimension > 19 that are not virtually spanned by their
roots.

If the conjecture is true, then it provides reflection groups acting with finite covolume on CH™
for all n < 13 and on HH™ for all n < 9. The condition on the lattices A appearing in the conjecture
has been verified in the Eisenstein case for dimensions < 12 by Feit [18] and in the Hurwitz case
for dimensions < 8 by Bachoc [3] and Bachoc and Nebe [4]. Furthermore, since enumerations
of selfdual lattices over €& and H have not been accomplished in higher dimensions, it might be
that I¢ 411 (resp. Igﬂ_m) is reflective for n even larger than 12 (resp. 8). The lowest-dimensional
selfdual lattice over € or H of which the author is aware and whose roots fail to virtually span it is
19-dimensional, the tensor product of € or H with a 19-dimensional Z-lattice having this property.

A similar conjecture could be made for the even Gaussian lattices IT} 411+ 1 it were true
then it would imply that this lattice is reflective exactly for n = 0,1 or 2. The failure to be
reflective in higher dimensions would follow from the fact that the Leech lattice may be regarded
as a 12-dimensional selfdual G-lattice with no roots.
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