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Abstract

The moduli space of cubic threefolds in CP 4, with some minor bi-
rational modifications, is the Baily-Borel compactification of the quo-
tient of the complex 10-ball by a discrete group. We describe both the
birational modifications and the discrete group explicitly.
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Introduction

One of the most basic facts in algebraic geometry is that the moduli
space of elliptic curves, which can be realized as plane cubic curves, is
isomorphic to the upper half plane modulo the action of linear frac-
tional transformations with integer coefficients. In [3], we showed that
there is an analogous result for cubic surfaces; the analogy is clear-
est when we view the upper half plane as complex hyperbolic 1-space,
that is, as the unit disk. The result is that the moduli space of sta-
ble cubic surfaces is isomorphic to a quotient of complex hyperbolic
4-space by the action of a specific discrete group. This is the group
of matrices which preserve the Hermitian form diag[−1, 1, 1, 1, 1] and
which have entries in the ring of Eisenstein integers: the ring obtained
by adjoining a primitive cube root of unity to the integers. The idea
of the proof is not to use the Hodge structure of the cubic surface,
which has no moduli, but rather that of the cubic threefold obtained
as a triple cover of CP 3 branched along the cubic surface. The result-
ing Hodge structures have a symmetry of order three, and the moduli
space of such structures is isomorphic to complex hyperbolic 4-space
CH4. This is the starting point of the proof, which relies crucially on
the Clemens-Griffiths Torelli Theorem for cubic threefolds [10].

The purpose of this article is to extend the analogy to cubic three-
folds. The idea is to use the period map for the cubic fourfolds obtained
as triple covers of CP 4 branched along the threefolds, using Voisin’s
Torelli theorem [41] in place of that of Clemens and Griffiths. In this
case, however, a new phenomenon occurs. There is one distinguished
point in the moduli space of cubic threefolds which is a point of in-
determinacy for the period map. This point is the one represented by
what we call a chordal cubic, meaning the secant variety of a rational
normal quartic curve in CP 4. The reason for the indeterminacy is that
the limit Hodge structure depends on the direction of approach to the
chordal cubic locus. In fact, the limit depends only on this direction,
and so the period map extends to the blowup of the moduli space.

The natural period map for smooth cubic threefolds [10] embeds the
moduli space in a period domain for Hodge structures of weight three,

ix



x INTRODUCTION

namely, a quotient of the Siegel upper half space of genus five. For this
embedding, however, the target space has dimension greater than that
of the source. For the construction of this article, the dimensions of
the source and target are the same.

To formulate the main result, let Mss be the GIT moduli space of

cubic threefolds, and let M̂ss be its blowup at the point corresponding
to the chordal cubics. Let Ms ⊆ Mss be the moduli space of stable

cubic threefolds, and let M̂s be M̂ss minus the proper transform of
Mss −Ms. Let M0 be the moduli space of smooth cubic threefolds.
Then we have the following, contained in the statement of the main
result, Theorem 6.1:

Theorem. There is an arithmetic group PΓ acting on complex
hyperbolic 10-space, such that the period map

M̂s −→ PΓ\CH10

is an isomorphism. This map identifies Ms with the image in PΓ\CH10

of the complement of a hyperplane arrangement Hc. It also identifies

the discriminant in M̂s with the image of another hyperplane arrange-
ment H∆ ⊆ CH10. In particular, it identifies M0 with PΓ\

(
CH10 −

(Hc ∪H∆)
)
. Finally, the period map extends to a morphism from M̂ss

to the Baily-Borel compactification PΓ\CH10.

We also provide much more detailed information about all the objects
in the theorem, such as explicit descriptions of PΓ, Hc and H∆, and an

analysis of the part of M̂ss lying over the boundary points of PΓ\CH10.

Now we will say what the group PΓ is. Let V be a cyclic cubic
fourfold, meaning a triple cover of P 4 branched over a cubic three-
fold. The primitive cohomology Λ(V ) of V is naturally a module for
the Eisenstein integers, where a primitive cube root of unity acts on
cohomology as does the corresponding deck transformation. When V
is smooth, this Eisenstein module carries a natural Hermitian form of
signature (10, 1), and PΓ is the projective isometry group of Λ(V ).

The architecture of our proof of Theorem 6.1 dates back to before
[1], and follows the pattern laid out in [3] for cubic surfaces. But it is
considerably more technical in its details. We therefore focus on the
points where there are major differences or where substantially more
work must be done as compared with the case of cubic surfaces.

In chapter 1 we establish basic facts about Λ(V ) as an Eisenstein
module endowed with a complex Hodge structure, give an inner product
matrix for Λ(V ), and show that M0 → PΓ\CH10 is an isomorphism
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onto its image. The argument here follows that of [3], except that in
place of the Clemens-Griffiths theorem, we use Claire Voisin’s Torelli
theorem for cubic fourfolds [41]. In this chapter we also establish facts
about the discriminant locus for cubic threefolds near stable singulari-
ties. These facts are used in chapter 3 for extending the period map.

In chapter 2 we blow up the space P 34 of cubic threefolds along
the chordal cubic locus, and describe the proper transform of the dis-
criminant locus. This is one of the most technical chapters in the
monograph, but it is required for the extension of the period map in
chapter 3. To give an idea of the main issue, consider a one-parameter
family of smooth cubic threefolds degenerating to a chordal cubic. We
may write it as F +tG = 0, where F = 0 defines the chordal cubic. The
polynomial G = 0 cuts out on the rational normal curve of F = 0 a
set of twelve points. Thus to a tangent vector at a point of the chordal
locus one associates a 12-tuple on the projective line. We show that
the discriminant locus in the blown-up P 34 has a local product struc-
ture, i.e., it is homeomorphic to the product of the discriminant locus
for 12-tuples in P 1, times a disk representing the transverse direction,
times a twenty-one dimensional ball corresponding to the action of the
projective group PGL(5, C). There is also a technical variation on this
result which gives an analytic model of the discriminant, not just a
topological one.

In chapter 3 we extend the period map to the semistable locus of
the blown-up P 34. This requires some geometric invariant theory to say
what the semistable locus is, and here the work of Reichstein [33] is
essential. Then we study the local monodromy groups at points in this
semistable locus. The essential result for the extension of the period
map is that these groups are all finite or virtually unipotent.

In chapter 4 we show that the extended period map sends the
chordal cubic locus to a divisor in PΓ\CH10. The main point here
is to identify the limit Hodge structure and in so doing show that the
derivative of the extended map along the blowup of the chordal cubic
locus is of rank nine. We do this by establishing an isogeny between the
limit Hodge structure and the sum of a 1-dimensional Hodge structure
and a Hodge structure associated to a six-fold cover of the projective
line branched at twelve points. These Hodge structures first arose in
the work of Deligne and Mostow [13]. Our analysis shows that the
image of the period map is the quotient of a totally geodesic CH9 by
a suitable subgroup of PΓ.
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Chapter 5 deals with the same issues for the divisor of nodal cubic
threefolds. Here the analysis is easier. We show that the Hodge struc-
ture is isomorphic to that of a special K3 surface, plus a 1-dimensional
summand. This K3 surface and its Hodge structure were treated in
Kondō’s work [22] on moduli of genus 4 curves.

In chapter 6 we assemble the various pieces to prove the main the-
orem, and in chapter 7 we give some supplemental results on the mon-
odromy group and the hyperplane arrangements.

Another proof of the main theorem has been obtained by Looijenga
and Swierstra [25] . Both proofs proceed by extending the period
map from the moduli space of smooth threefolds to a larger space, but
the extension process is quite different in the two proofs. We use a
detailed analysis of the discriminant in the space obtained by blowing
up the chordal cubic locus to extend the period map. Looijenga and
Swierstra use a general machinery developed earlier by them [24] to
handle extensions of period mappings. We are grateful to Looijenga
for sending us an early version of their argument.

It is a pleasure to thank the many people whose conversations have
played a helpful role in the long gestation of this monograph, includ-
ing Herb Clemens, Alessio Corti, Johan de Jong, János Kollár, Eduard
Looijenga and Madhav Nori. We are especially grateful to the referee
for a very careful reading and many corrections and suggestions. We
would also like to thank the Clay Mathematics Institute for its hospi-
tality and for its support of the second author.



CHAPTER 1

Moduli of Smooth Cubic Threefolds

This chapter contains a number of foundational results, and its
main theorem, Theorem 1.9, is of interest in its own right. We consider
cyclic cubic fourfolds, i.e., triple covers of CP 4 branched along cubic
threefolds. (1) The cohomology of such a fourfold is a module over
E = Z[ω= 3

√
1], equipped with a Hermitian form. (2) The monodromy

on this lattice as the threefolds acquire a node is a complex reflection
of order three; see Lemma 1.4. (3) To analyze the local monodromy
for more complicated singularities, we give a structure theorem for
the discriminant locus of the space of cubic threefolds near a cubic
threefold with singularities of type An and D4. See Lemma 1.5. Using
this result, we give an inner product matrix for the Hermitian form;
see Theorem 1.7. (4) With the previous results in hand, we define a
framing of the Hodge structure of a cyclic cubic fourfold and define the
period map. Finally, the main theorem of the chapter is that the period
map for smooth cubic threefolds is an isomorphism onto its image; see
Theorem 1.9.

Let C be the space of all nonzero cubic forms in variables x0, . . . , x4.
For such a form F let T be the cubic threefold in CP 4 it defines, and
let V be the cubic fourfold in CP 5 defined by F (x0, . . . , x4) + x3

5 = 0.
Whenever we consider F ∈ C, T and V will have these meanings. V is
the triple cover of CP 4 branched along T . We write C0 for the set of
F ∈ C for which T is smooth (as a scheme) and ∆ for the discriminant
C − C0. We will sometimes also write ∆ for its image in PC; context
will make our meaning clear. We write Cs for the set of F ∈ C for
which T is stable in the sense of geometric invariant theory. By [1] or
[42], this holds if and only if T has no singularities of types other than
A1, . . . , A4. Cs will play a major role in chapters 3–6; in this chapter
all we will use is the fact that C0 lies within it.

Because we will vary our threefolds, we will need the universal fam-
ily T ⊆ C × CP 4 of cubic threefolds,

T =
{

(F, [x0: . . . :x4]) ∈ C × CP 4
∣∣ F (x0, . . . , x4) = 0

}
,

1



2 1. MODULI OF SMOOTH CUBIC THREEFOLDS

and the family V of covers of CP 4 branched over them,

V =
{

(F, [x0: . . . :x5]) ∈ C × CP 5
∣∣ F (x0, . . . , x4) + x3

5 = 0
}

.

We will write πT and πV for the projections T → C and V → C.
The total spaces of T and V are smooth. We write T0 and V0 for the
topologically locally trivial fibrations which are the restrictions of T
and V to C0. The transformation σ : C6 → C6 given by

(1.1) σ(x0, . . . , x5) = (x0, . . . , x4, ωx5) ,

where ω is a fixed primitive cube root of unity, plays an essential role in
all that follows. We regard it as a symmetry of V and of the individual
V ’s.

Our period map C0 → CH10 will be defined using the Hodge struc-
ture of the fourfolds and its interaction with σ, so we need to discuss
H4(V ) for F ∈ C0. To compute this it suffices by the local triviality
of V0 to consider the single fourfold x3

0 + · · · + x3
5 = 0; by thinking of

it as an iterated branched cover, one finds that its Euler characteristic
is 27. The Lefschetz hyperplane theorem and Poincaré duality imply
that H i(V ; Z) is the same as H i(CP 5; Z) for i 6= 4, so H4(V ; Z) ∼= Z23.
The class of a 3-plane in CP 5 pulls back to a class η(V ) ∈ H4(V ; Z)
of norm 3. The primitive cohomology H4

0 (V ; Z) is the orthogonal com-
plement of η(V ) in H4(V ; Z). Since H4(V ; Z) is a unimodular lattice,
H4

0 (V ; Z) is a 22-dimensional lattice with determinant equal to that of
〈η(V )〉, up to a sign, so det H4

0 (V ; Z) = ±3.

H4
0 (V ; Z) is a module not only over Z but over the Eisenstein

integers E = Z[ω] as well. To see this, observe that the isomor-
phism V/〈σ〉 ∼= CP 4 implies that H4(CP 4; C) is the σ-invariant part
of H4(V ; C). Therefore σ fixes no element of H4

0 (V ; C) except 0, hence
no element of H4

0 (V ; Z) except 0. We define Λ(V ) to be the E-module
whose underlying additive group is H4

0(V ; Z), with the action of ω ∈ E
defined as σ∗. E is a unique factorization domain, so Λ(V ) is free of
rank 11. We define a Hermitian form 〈 |〉 on Λ(V ) by the formula

(1.2) 〈α|β〉 =
1

2

[
3α · β − θα · (σ∗−1β − σ∗β)

]
,

where the dot denotes the usual pairing α·β =
∫

V
α∧β and θ = ω−ω̄ =√

−3. The scale factor 1/2 is chosen so that 〈α|β〉 takes values in E ; it
is the smallest scale for which this is true.

Lemma 1.1. 〈|〉 is an E-valued Hermitian form, linear in its first
argument and antilinear in its second. Furthermore, 〈α|β〉 ∈ θE for all
α, β ∈ Λ(V ).
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Proof. Z-bilinearity is obvious. E-linearity in its first argument
holds by the following calculation. (Throughout the proof we write σ
for σ∗.)

〈θα|β〉 =
〈
σα − σ−1α

∣∣β
〉

=
1

2

[
3(σα − σ−1α) · β − θ(σα − σ−1α) · (σ−1β − σβ)

]

=
θ

2

[
θ̄σα · β − θ̄σ−1α · β

− (σα · σ−1β − σα · σβ − σ−1α · σ−1β + σ−1α · σβ)
]

=
θ

2

[
θ̄α · σ−1β − θ̄α · σβ

− (α · σ−2β − α · β − α · β + α · σ2β)
]

=
θ

2

[
2α · β − α · (σ−2β + σ2β) − θ(α · σ−1β − α · σβ)

]

=
θ

2

[
3α · β − θα · (σ−1β − σβ)

]

= θ 〈α|β〉 .

In the second-to-last step we used the relation σ−2+σ2 = σ+σ−1 = −1.
That 〈|〉 is a C-valued Hermitian form now follows from 〈α|β〉 = 〈β|α〉;
to prove this it suffices to check that the imaginary part of (1.2) changes
sign when α and β are exchanged, i.e.,

α · (σ−1β − σβ) = α · σ−1β − α · σβ

= σα · β − σ−1α · β
= −(σ−1α − σα) · β
= −β · (σ−1α − σα) .

Next we check that 〈|〉 is E-valued. It is obvious that its real part takes
values in 1

2
Z and that its imaginary part takes values in θ

2
Z. Since

E = { a/2 + bθ/2 | a, b ∈ Z and a ≡ b mod 2 } ,

it suffices to prove that

3α · β ≡ −α · (σ−1β − σβ) (mod 2),

that is, that 2 divides α·(β−σβ+σ−1β). This follows from the relation
1 − ω + ω̄ = −2ω in E . Furthermore, (1.2) shows that 〈α|β〉 has real
part in 3

2
Z; since every element of E with real part in 3

2
Z is divisible by

θ, the proof is complete. �
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We will describe Λ(V ) more precisely later, after considering the
Hodge structure of V . To do so, we wish to state a general version
of the Griffiths residue calculus that will be used again and again,
especially in chapters 4 and 5. The original reference is [18]. See [14]
and [39] for the case of weighted projective spaces.

Proposition 1.2. (Griffiths Residue Calculus). Let X be a
quasismooth hypersurface in a weighted projective space P n(a) = P (a0,
a1, . . . , an). That is, X is given by a weighted homogeneous polynomial
F (X0, X1, . . . , Xn) of degree d whose partial derivatives have no com-
mon zero other than the origin. Let

E =
∑

Xi
∂

∂Xi

be the Euler vector field. It is homogeneous of degree zero with respect
to the C∗-action defining P n(a). Let dV = dX0∧dX1∧· · ·∧dXn be the
Euclidean volume form, and let Ω = i(E)dV , where i denotes interior
multiplication, be the projective volume form. It has degree equal to the
sum of the weights ai. Consider expressions of the form

Ω(A) =
AΩ

F q+1
,

where A is a homogeneous polynomial whose degree is such that Φ is
homogeneous of degree zero. Then the Poincaré residues of Ω(A) span
F n−qHn(X)0, where F ∗ is the Hodge filtration and the subscript denotes
primitive cohomology. The residue lies in F n−q+1 if and only if A lies
in the Jacobian ideal of F , that is, the ideal generated by the first partial
derivatives of F .

From the preceding proposition we find the Hodge numbers h4,0
0 =

h0,4
0 = 0, h3,1

0 = h1,3
0 = 1 and h2,2

0 = 20. Since σ is holomorphic,
its eigenspace decomposition refines the Hodge decomposition. The
interesting component is the H3,1 space, which is spanned by

(1.3) Ω(1) =
Ω

(F + x3
5)

2
.

The transformation multiplies the numerator by ω and leaves the de-
nominator invariant. Thus H3,1 has eigenvalue ω. Thus H4

ω(V ; C) =
H3,1

ω ⊕ H2,2
ω , the summands being one- and ten-dimensional.

On H4(V ; C) there is the Hodge-theoretic Hermitian pairing

(1.4) (α, β) = 3

∫

V

α ∧ β̄ .
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The Hodge-Riemann bilinear relations [19, p. 123] show that (, ) is
positive-definite on H2,2

0 and negative-definite on H3,1. It follows that
H4

ω(V ; C) has signature (10, 1).

If W is a complex vector space of dimension n+1 with a Hermitian
form of signature (n, 1) then we write CH(W ) for the space of lines
in W on which the given form is negative definite. We call this the
complex hyperbolic space of W ; it is an open subset of PW and is
biholomorphic to the unit ball in Cn. The previous two paragraphs
may be summarized by saying that the Hodge structure of V defines a
point in CH

(
H4

ω(V ; C)
)
.

We chose the factor 3 in (1.4) so that (, ) and 〈|〉 would agree in
the sense of the next lemma. To relate the two Hermitian forms we
consider the R-linear map H4

0 (V ; R) → H4
ω(V ; C) which is the inclusion

H4
0 (V ; R) → H4(V ; R) → H4(V ; C)

followed by projection to σ’s ω-eigenspace. This is an isomorphism of
real vector spaces. Since the Z-lattice underlying Λ(V ) is H4

0 (V ; Z) ⊆
H4

0 (V ; R), we get a map Z : Λ(V )⊗ZR → H4
ω(V ; C). Since the complex

structure on Λ(V ) ⊗Z R is defined by taking ω to act as σ∗, and since
H4

ω is defined as a space on which σ∗ acts by multiplication by ω, Z is
complex-linear. Since Λ(V ) ⊗Z R = Λ(V ) ⊗E C, we may regard Z as
an isomorphism Λ(V ) ⊗E C → H4

ω(V ; C) of complex vector spaces.

Lemma 1.3. For all α, β ∈ Λ(V ),
(
Z(α), Z(β)

)
= 〈α|β〉.

Proof. Since both (, ) and 〈|〉 are Hermitian forms, it suffices to
check that (Zα, Zα) = 〈α|α〉 for all α. We write αω and αω̄ for the
projections of α ∈ H4

0 (V ; R) to H4
ω(V ; C) and H4

ω̄(V ; C). By definition,

(Zα, Zα) = 3

∫

V

αω ∧ αω = 3

∫

V

αω ∧ αω̄ .

We will write σ for σ∗ throughout the proof. Since σα = ωαω + ω̄αω̄

and σ−1α = ω̄αω + ωαω̄, we deduce αω = −1
θ
(ωσα − ω̄σ−1α) and

αω̄ = −1
θ
(−ω̄σα + ωσ−1α). Therefore

(Zα, Zα) = 3

∫
1

θ2

[
ωσα ∧ (−ω̄σα) + ωσα ∧ ωσ−1α

− ω̄σ−1α ∧ (−ω̄σα) − ω̄σ−1α ∧ ωσ−1α
]

= −
∫ [

−σα ∧ σα + ω̄σα ∧ σ−1α

+ ωσ−1α ∧ σα − σ−1α ∧ σ−1α
]
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= −
∫ [

−2α ∧ α − σα ∧ σ−1α
]

= 2α · α +

∫
σα ∧ σ−1α .

To evaluate the second term, we use

(1.5)

∫
σα ∧ α +

∫
σα ∧ σα +

∫
σα ∧ σ−1α = 0 ,

which follows from 1 + σ + σ−1 = 0. Since σ is an isomorphism and ∧
is symmetric, the first and last terms of (1.5) are equal, so we get

∫
σα ∧ σ−1α = −1

2

∫
σα ∧ σα = −1

2
α · α .

This yields

(Zα, Zα) =
3

2
α · α = 〈α|α〉

as desired. �

From the lemma it follows that Λ(V ) has signature (10, 1) and that
CH

(
H4

ω(V ; C)
)

is naturally identified with CH
(
Λ(V )⊗E C

)
. We write

CH(V ) for either of these complex hyperbolic spaces.

In order to study the variation of the Hodge structure of V we
must realize our constructions in local systems over C0. To do this we
use the fact that the family V0 over C0 gives rise to a sheaf R4π∗(Z)
over C0. Recall that this is the sheaf associated to the presheaf U 7→
H4(π−1

V (U); Z). Since V0 is topologically locally trivial, R4π∗(Z) is a
local system of 23-dimensional Z-lattices isomorphic to H4(V ; Z). The
map η : F 7→ η(V ), for F ∈ C0, is a section over C0, and the subsheaf
(R4π∗(Z))0, whose local sections are the local sections of R4π∗(Z) or-
thogonal to η, is a local system of 22-dimensional Z-lattices isomorphic
to H4

0 (V ; Z). Since σ acts on V0, it acts on R4π∗(Z); since it preserves
η it acts on (R4π∗(Z))0, giving the sheaf the structure of a local system
of E-modules isomorphic to Λ(V ). We call this local system Λ(V0).
The formula (1.2) endows Λ(V0) with the structure of a local system
of Hermitian E-modules. We write CH(V0) for the corresponding local
system of hyperbolic spaces.

We can also consider the sheaf R4π∗(C) over C0; it is a local system
because it is the complexification of R4π∗(Z). Now, σ acts on R4π∗(C)
and we consider its ω-eigensheaf (R4π∗(C))ω, which is a local system
of Hermitian vector spaces isometric to H4

ω(V ; C), hence of signature
(10, 1), with a corresponding local system of complex hyperbolic spaces.
The map Z identifies the local systems Λ(V0) ⊗E C and (R4π∗(C))ω,
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and therefore identifies the two local systems of complex hyperbolic
spaces. Therefore we may regard the inclusion H3,1(V ) → H4

ω(V ) as
defining a section

(1.6) g : C0 → CH(V0) .

It is holomorphic since the Hodge filtration varies holomorphically.
This is the period map; all our results refer to various formulations
of it.

Next we obtain a concrete description of the E-lattice Λ(V ), by
investigating the monodromy of Λ(V0). Fix a basepoint F ∈ C0, let
Γ(V ) be the isometry group of Λ(V ), and let ρ be the monodromy
representation π1(C0, F ) → Γ(V ). By a meridian around a divisor,
such as ∆, we mean the boundary circle of a small disk transverse to
the divisor at a generic point of it, traversed once positively.

If W is a complex vector space then a complex reflection of W
is a linear transformation that fixes a hyperplane pointwise and has
finite order > 1. If this order is 3 or 6 then it is called a triflection or
hexaflection. If W has a Hermitian form 〈|〉, r ∈ W has nonzero norm
and ζ is a primitive nth root of unity, then the transformation

(1.7) x 7→ x − (1 − ζ)
〈x|r〉
〈r|r〉 r

is a complex reflection of order n and preserves 〈|〉. It fixes r⊥ pointwise
and sends r to ζr; we call it the ζ-reflection in r. If r has norm 3 and
lies in an E-lattice in which θ divides all inner products, such as Λ(V ),
then (1.7) shows that ω-reflection in r also preserves the lattice. In this
case we call r a root; this is meant to bring out the analogy with roots
in the usual An, Dn, En root lattices, which also define reflections.

Lemma 1.4. The image of a meridian under the monodromy rep-
resentation ρ : π1(C0, F ) → Γ(V ) = Aut Λ(V ) is the ω-reflection in a
root of Λ(V ).

Proof. The argument is much the same as for Lemma 5.4 of [3].
Let D be a small disk in C, meeting ∆ only at its center, and transver-
sally there. We write F0 for the form at the center of D. Suppose
without loss of generality that the basepoint F of C0 is on ∂D, and let
γ be the element of π1(C0, F ) that traverses ∂D once positively. The
essential ingredients of the proof are the following. First, T0 has an
A1 singularity, so we can choose local analytic coordinates x1, . . . , x4

in which it is defined by x2
1 + · · · + x2

4. Then V0 has local analytic
description x2

1 + · · · + x2
4 + x3

5 = 0, which is to say that it is an A2
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singularity. Second, the vanishing cohomology for this singularity, i.e.,
the Poincaré dual of the kernel of

H4(V ; Z) → H4(V|D; Z) ∼= H4(V0; Z) ,

is a (positive-definite) copy of the A2 root lattice. (An A2 surface singu-
larity has vanishing cohomology a negative-definite copy of this lattice,
and the sign changes when the dimension increases by 2.) Third, fol-
lowing Sebastiani-Thom [35], this lattice may be described as

V (2) ⊗ V (2) ⊗ V (2) ⊗ V (2) ⊗ V (3) ,

where V (k) is the Z-module spanned by the differences of the kth roots
of unity, γ acts by

(−1) ⊗ (−1) ⊗ (−1) ⊗ (−1) ⊗ ω .

Here, −1 (resp. ω) indicates the action on V (2) (resp. V (3)) given by
sending each square root (resp. cube root) of unity to itself times −1
(resp. ω). This shows that the vanishing cohomology is a 1-dimensional
E-lattice; we write r for a generator. Fourth, we can compare the action
of γ on the vanishing cycles with the action of σ. The Sebastiani-Thom
argument proceeds by describing the Milnor fiber, up to homotopy, as
the join of 2 points with 2 points with 2 points with 2 points with 3
points, corresponding to the exponents in the local defining equation.
Therefore σ : x5 → ωx5 acts on the vanishing cycles as 1⊗1⊗1⊗1⊗ω,
in the notation just introduced. This shows that γ acts on the vanishing
cycles in the same way that σ does. Since ω’s action on Λ(V ) is defined
to be σ∗, γ acts on 〈r〉 by ω. Fifth, γ acts trivially on the orthogonal
complement of the vanishing cohomology in H4(V ; Z); this implies that
γ is the ω-reflection in r. Finally, since the roots of the A2 lattice have
norm 2, we see by (1.2) that 〈r|r〉 = 3. �

The following two lemmas play only a small role in this chapter, at
one point in the proof of Theorem 1.7, to which the reader could skip
right away. However, they will be very important in chapter 3, where
we extend the domain of the period map. Their content is that the
discriminant has nice local models, which make many homomorphisms
from braid groups into π1(C0) visible. We also show that distinct braid
generators have distinct monodromy actions.

We recall that the fundamental group of the discriminant comple-
ment of an An singularity is the braid group Bn+1, also known as the
Artin group A(An) of type An. More generally, the Artin group of
an An, Dn or En Dynkin diagram has one generator for each node,
with two of the generators braiding (aba = bab) or commuting, corre-
sponding to whether the corresponding nodes are joined or not. It is
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the fundamental group of the discriminant complement of that corre-
sponding singularity [8]. Only A(An) and A(D4) will be relevant to
this monograph.

Lemma 1.5. Suppose F ∈ C defines a cubic threefold with singu-
larities s1, . . . , sm, each having one of the types An or D4, and no
other singularities. Let Ki=1,...,m be the base of a miniversal defor-
mation of a singularity having the type of si, with discriminant locus
∆i ⊆ Ki. Then there is a neighborhood U of F in C biholomorphic to
K1 × · · · × Km × BN , where N = 35 − ∑

dim Ki, such that U − ∆
corresponds to

(K1 − ∆1) × · · · × (Km − ∆m) × BN .

In particular, π1(U − ∆) is the direct product of m Artin groups, the
ith factor having the type of the singularity si.

Proof. This is essentially the assertion that C contains a simulta-
neous versal deformation of all the singularities of T . By Theorem 1.1
of [32], it suffices to show that the sum of the Tjurina numbers of
s1, . . . , sm is less than 16. Because the singularities of T are quasiho-
mogeneous, their Tjurina numbers coincide with their Milnor numbers.

We will write µi for the Milnor number of T ’s singularity at si,
and Zi ⊆ H4

0 (V ) for the vanishing cohomology of the corresponding
singularity of V . If T has a D4 singularity at si, then µi = 4, and V
has an Ẽ6 singularity there, with dim Zi = 8 and dim(Zi ∩ Z⊥

i ) = 2.
When T has an An singularity at si, we have µi = n, and V has a
singularity locally modeled on x2

0+x2
1+x2

2+y3+zn+1 = 0. By [4, p. 77],
Zi has a basis a1, . . . , an, b1, . . . , bn with a2

i = b2
i = 2, ai · ai±1 = −1,

bi · bi±1 = −1, ai · bi = −1, ai · bi−1 = 1, and all other inner products
zero. For n > 11 this quadratic form has a negative-definite subspace
of dimension ≥ 4, so it cannot lie in H4

0 (V ), which has signature (20, 2).
Therefore cubic threefolds cannot have An>11 singularities. For n < 12,
Zi is nondegenerate except for n = 5 and 11, when dim(Zi ∩ Z⊥

i ) = 2.
We made these calculations using PARI/GP [31].

In every case, we have µi ≤ 2
3
dim

(
Zi/(Zi ∩ Z⊥

i )
)
. Since i 6= j

implies Zi ⊥ Zj, we have
∑

dim
(
Zi/(Zi ∩ Z⊥

i )
)
≤ dim H4

0 (V ) = 22 .

Putting these inequalities together yields
∑

µi ≤ 2
3
· 22 < 16, so that

[32] applies. This gives the claimed description of ∆ near F , and the
description of π1(U − ∆) follows immediately. �
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Lemma 1.6. In the situation of the previous lemma, suppose g and
g′ are two of the standard generators for π1(U − ∆, F ′), where F ′ is a
basepoint in U − ∆. Then ρ(g), ρ(g′) ∈ Γ(V ′) are the ω-reflections in
linearly independent roots r, r′ ∈ Λ(V ′).

Proof. If T has exactly two singularities, both of type A1, then
near F , ∆ has two components, and g and g′ are meridians around
them. As we saw in the proof of Lemma 1.4, V has two A2 singularities,
and the vanishing cohomology of each of them is a σ-invariant sublattice
of H4

0 (V ′). In fact, they are the E-spans of r and r′. With respect
to the cup product, vanishing cocycles for distinct singularities are
orthogonal, and it follows from (1.2) that they are also orthogonal
under 〈|〉. Therefore r ⊥ r′. Since r and r′ have nonzero norm, they
must be linearly independent.

Now allow T to have An and/or D4 singularities, and suppose g
and g′ commute. Then there exists F0 ∈ U and a neighborhood U0 of
F0 in U with the following properties. T0 has just two singularities,
both nodes, U0 contains F ′, π1(U0 − ∆, F ′) ∼= Z2, and g, g′ ∈ π1(U −
∆, F ′) are represented by loops in U0 that are meridians around the
two components of ∆ at F0. These properties follow from Brieskorn’s
description [7] of the versal deformations of simple singularities in terms
of the corresponding Coxeter groups. By the previous paragraph, r and
r′ are linearly independent.

Before treating the braiding case, we discuss A2-threefolds, meaning
those having a single singularity, of type A2. Call such a threefold bad
if its local monodromy group is cyclic, and good otherwise. Because
the discriminant near an A2-threefold is locally a product, badness and
goodness are both open properties. One can show that the set of
A2-threefolds is irreducible. (See the remark following Lemma 3.9.)
Therefore either every A2-threefold is bad or every one is good.

Now suppose T is a cubic threefold with only An and D4 singu-
larities, and suppose g and g′ braid. The same reference to [7] shows
that there exists F0 ∈ U and a neighborhood U0 of F0 in U with the
following properties. T0 has just one singularity, of type A2, F ′ ∈ U0,
π1(U0 − ∆, F ′) ∼= B3, and g, g′ ∈ π1(U − ∆, F ′) are represented by the
standard generators of B3.

Now we claim that every A2-threefold is good. As explained above,
it suffices to exhibit a single good A2-threefold, and for this purpose
we take T to be an A3-threefold, with g and g′ the first two standard
generators of π1(U −∆, F ′) ∼= B4. Adjoining the relation g = g′ would
reduce B4 to Z. If ρ(g) = ρ(g′), then ρ|B4

factors through Z, which
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implies that all three generators of B4 have the same ρ-image. This is
impossible by the commuting case, because the first and last generators
commute. Therefore the threefold T0 near T is a good A2-threefold.

Finally, suppose T is any cubic threefold with only An and D4

singularities, and g, g′ are standard generators for π1(U − ∆, F ′) that
braid. If ρ(g) = ρ(g′) then some threefold T0 near T would be a bad A2-
threefold, which is impossible. Therefore r and r′ are not proportional.

Remark: the hypothesis that T have only An and D4 singularities
is needed for the statement of the lemma to make sense, since it pre-
supposes the description of π1(U − ∆) from the previous lemma. But
this hypothesis is probably inessential for both lemmas. �

Theorem 1.7. For F ∈ C0, Λ(V ) is isometric to the E-lattice with
inner product matrix

(1.8) Λ :=
(
3
)
⊕




3 θ 0 0
θ̄ 3 θ 0
0 θ̄ 3 θ
0 0 θ̄ 3


 ⊕




3 θ 0 0
θ̄ 3 θ 0
0 θ̄ 3 θ
0 0 θ̄ 3


 ⊕

(
0 θ
θ̄ 0

)
.

Remarks. Regarding (1.8) as an 11× 11 matrix (λij), this means
that Λ = E11, with

〈
(x1, . . . , x11)

∣∣(y1, . . . , y11)
〉

=
∑

i,j

λijxiȳj .

The four-dimensional lattice appearing twice among the summands is
called EE

8 , because its underlying Z-lattice is a scaled copy of the E8

root lattice.

Proof. By section 2 of [1], the cubic threefold T0 defined by

F0 = x3
2 + x0x

2
3 + x2

1x4 − x0x2x4 − 2x1x2x3 + x3
4

has an A11 singularity at [1:0: . . . :0] ∈ CP 4 and no other singularities.
By Lemma 1.5, we may choose a neighborhood U of F0 and F ∈ U −∆
such that π1(U − ∆, F ) ∼= B12. By Lemma 1.4, the standard gen-
erators of B12 act on Λ(V ) by the ω-reflections R1, . . . , R11 in roots
r1, . . . , r11 ∈ Λ(V ). By Lemma 1.6, these roots are pairwise linearly
independent. The commutation relations imply ri ⊥ rj if j 6= i±1. By
the argument of [2, §5], the relation RiRi+1Ri = Ri+1RiRi+1 implies
that

∣∣〈ri|ri+1〉
∣∣ =

√
3, so after multiplying some of the ri by scalars, we

may take 〈ri|ri+1〉 = θ.

The rank of the inner product matrix of the ri is 10. Therefore,
if they were linearly independent then they would span Λ up to finite
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index, and the Hermitian form on Λ would be degenerate. It is not, so
the span must be only 10-dimensional. By the argument of [2, §5], the
ri span a sublattice of Λ(V ) isometric to the direct sum (call it Λ10) of
the last three summands of (1.8). In [2] we used a form of signature
(1, 9) rather than (9, 1); this difference is unimportant. One can check
directly that θΛ∗

10 = Λ10; the underlying reason is that the real forms
of EE

8 and
(

0 θ
θ̄ 0

)
are scaled copies of even unimodular Z-lattices. Since

Λ(V ) ⊆ θΛ(V )∗, Λ10 is a direct summand of Λ(V ), so Λ(V ) ∼= (n)⊕Λ10

for some n ∈ Z. We have n > 0 because Λ(V ) has signature (10, 1).

For an E-lattice M we define MZ to be the Z-module underlying M ,
equipped with the Z-bilinear pairing α · β = 2

3
Re 〈α|β〉. Computation

shows that (n)Z has inner product matrix
( 2n/3 −n/3
−n/3 2n/3

)
, (EE

8 )Z is the even

unimodular Z-lattice E8, and
(

0 θ
θ̄ 0

)
Z

is the even unimodular Z-lattice

II2,2 =
(

0 1
1 0

)
⊕

(
0 1
1 0

)
. Since (Λ(V ))Z = H4

0 (V ; Z) has determinant ±3,
we must have n = 3. �

We define a framing of a form F ∈ C0 to be an equivalence class
[φ] of isometries φ : Λ(V ) → Λ, two isometries being equivalent if they
differ by multiplication by a scalar. Sometimes we write φ rather than
[φ] and leave it to the reader to check that the construction at hand
depends only on [φ]. We define F0 to be the set of all framings of all
smooth cubic forms. Since the stalk of Λ(V0) at F ∈ C0 is canonically
isomorphic to Λ(V ), the set F0 is in natural bijection with the subsheaf
of PHom

(
Λ(V0), C0 ×Λ

)
consisting of projective equivalence classes of

homomorphisms which are isometries on each stalk. This bijection
gives F0 the structure of a complex manifold. We refer to an element
(F, [φ]) of F0 as a framed smooth cubic form.

We write Γ for Aut Λ and PΓ for PAut Λ. On F0 are defined
commuting actions of PΓ and G = GL5C/D, where D is the group
{I, ωI, ω̄I}. An element γ of PΓ acts on the left by

γ.(F, [φ]) = (F, [γ ◦ φ]) .

This action realizes PΓ as the group of deck transformations of the
covering space F0 → C0. An element g of GL5C acts on the right by

(1.9)
(
F, [φ]

)
.g =

(
F ◦ g, [φ ◦ g∗−1]

)
.

Here, GL5C acts on C5 on the left, hence acts on C on the right by
(F.g)(x) = F (g.x), i.e., F.g = F ◦ g. We extend GL5C’s action on
C5 to C6 = C5 ⊕ C by the trivial action on the C summand. This
induces a right action on V by (F, x).g = (F.g, g−1x). That is, g carries
the zero-locus of (F + x3

5).g to the zero-locus of F + x3
5. The g∗−1
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appearing in (1.9) is the inverse of the induced map on cohomology,
which respects the E-module structure since g commutes with σ. The
subgroup D ⊆ GL5C acts trivially on F0 because it acts trivially on C0

and by scalars on every Λ(V ).

We now introduce the moduli spaces M0 and Mf
0 of smooth and

framed smooth cubic threefolds. Since C0 ⊆ Cs, G acts properly on
C0, with the quotient M0 = C0/G a complex analytic orbifold and a
quasiprojective variety. The properness on C0 implies properness on F0,
so Mf

0 = F0/G is a complex analytic orbifold and an analytic space.

We will see in Lemma 1.8 that Mf
0 is a complex manifold. Since the

G-stabilizer of a point (F, [φ]) of F0 is a subgroup of the G-stabilizer of
F ∈ C0, the covering map F0 → PΓ\F0 = C0 descends to an orbifold

covering map Mf
0 = F0/G → C0/G = M0. Counting dimensions

shows that M0 and Mf
0 are 10-dimensional.

We write CH10 for CH(Λ⊗EC). Recall that H3,1(V ; C) is a negative
line in the Hermitian vector space H4

ω(V ; C) and that Z is an isometry
Λ(V ) ⊗E C → H4

ω(V ; C). We reformulate the period map (1.6) as the
holomorphic map g : F0 → CH10 given by

(1.10) g(F, [φ]) = φ
(
Z−1

(
H3,1(V ; C)

))
.

On the right we have written just φ for φ’s C-linear extension Λ(V )⊗E

C → Λ ⊗E C. Since CH10 is a 10-ball and bounded holomorphic func-
tions on GL5C are constant, g is constant along GL5C-orbits, so it
descends to a holomorphic map g : Mf

0 → CH10, also called the period
map. This map is equivariant with respect to the action of PΓ, so it
in turn descends to a map

(1.11) g : M0 = PΓ\Mf
0 = PΓ\F0/GL5C → PΓ\CH10 ,

again called the period map.

Lemma 1.8. G acts freely on F0, so that Mf
0 is a complex manifold,

not just an orbifold. The period map g : Mf
0 → CH10 has rank 10 at

every point of Mf
0 .

Proof. We prove the second assertion first. Let F ∈ C0, let F ′ ∈ C
be different from F , and let ε > 0 be small enough that the disk
D = {F + tF ′ | t ∈ C and |t| ≤ ε } lies in C0. Writing Ft for F + tF ′,
we know from the discussion surrounding (1.3) that H3,1(Vt) is spanned
by the residue of Ω/(Ft + x3

5)
2. Since V trivializes over D, we may

unambiguously translate this class into H4(V ; C); this gives a map
h : D → H4(V ; C). For sufficiently small t, h(Ft) is the element of



14 1. MODULI OF SMOOTH CUBIC THREEFOLDS

Hom
(
H4(V ; Z), C

)
given by

(an integral 4-cycle C) 7→
∫

∂N

Ω

(Ft + x3
5)

2

where N is the part of the boundary of a tubular neighborhood of V
in CP 5 that lies over a submanifold of V representing C. Therefore
we may differentiate with respect to t under the integral sign, so the
derivative of h at the center of D is the element of Hom

(
H4(V ; Z), C

)

given by

C 7→
∫

∂N

Ω

(Ft + x3
5)

3
· (−2)

∂

∂t
(Ft + x3

5)

∣∣∣∣∣
t=0

= −2

∫

∂N

ΩF ′(x0, . . . , x4)

(F + x3
5)

3
.

This lies in H4
ω(V ; C), and it lies in H3,1 if and only if F ′ lies in the

Jacobian ideal of F +x3
5, i.e., if and only if F ′ lies in the Jacobian ideal

of F , i.e., if and only if the pencil 〈F, F ′〉 in C is tangent to the G-orbit
of F .

Upon choosing a framing φ for F and lifting D to a disk D̃ =
{(Ft, [φt])} in F0 passing through (F, [φ]), it follows that the derivative
of g : F0 → CH10 along D̃ at (F, [φ]) is zero if and only if D̃ is tangent
to the G-orbit of (F, [φ]). Since the orbit has codimension 10, g has
rank 10.

To prove the first assertion, recall that an orbifold chart about
the image of (F, [φ]) in Mf

0 is U → U/H ⊆ Mf
0 , where H is the

G-stabilizer of (F, [φ]) and U is a small H-invariant ball transverse
to the G-orbit of (F, [φ]). We have just seen that the composition

U → U/H ⊆ Mf
0 → CH10 has rank 10 and is hence a biholomorphism

onto its image. It follows that H = {1}. �

Theorem 1.9. The period map g : M0 → PΓ\CH10 is an isomor-
phism onto its image.

Proof. We begin by proving that if F and F ′ are generic elements
of C0 with the same image under g then they are G-equivalent, i.e.,
T and T ′ are projectively equivalent. By hypothesis there exists an
isometry b : Λ(T ) → Λ(T ′) which carries Z−1(H3,1(V )) ∈ Λ(V ) ⊗E C
to Z−1(H3,1(V ′)) ∈ Λ(V ′) ⊗E C. Passing to the underlying integer
lattices, b is an isometry H4

0 (V ; Z) → H4
0 (V ′; Z) carrying H3,1(V ; C)

to H3,1(V ′; C). By complex conjugation it also identifies H1,3(V ; C)
with H1,3(V ′; C), and by considering the orthogonal complement of
H3,1 ⊕H1,3 we see that it identifies H2,2

0 (V ; C) with H2,2
0 (V ′; C). That

is, it induces an isomorphism of Hodge structures.
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Next: one of ±b extends to an isometry H4(V ; Z) → H4(V ′; Z)
carrying η(V ) to η(V ′). This follows from some lattice-theoretic con-
siderations: if L is a primitive sublattice of a unimodular lattice M
(i.e., L = (L ⊗ Q) ∩ M), and is nondegenerate, then the projections
of M into L ⊗ Q and L⊥ ⊗ Q define an isomorphism of L∗/L with
(L⊥)∗/L⊥. Here the asterisk denotes the dual lattice. It is easy to
check that an isometry of L and an isometry of L⊥ together give an
isometry of M if and only if their actions on L∗/L and (L⊥)∗/L⊥ coin-
cide under this identification. Since

〈
η(V )

〉∗
/
〈
η(V )

〉 ∼= Z/3, it follows
that exactly one of the isometries

〈
η(V )

〉
⊕ H4

0 (V ; Z) →
〈
η(V ′)

〉
⊕ H4

0 (V ′; Z) ,

given on the first summand by η(V ) 7→ η(V ′), and on the second by
±b, extends to an isometry H4(V ; Z) → H4(V ′; Z).

From Voisin’s theorem [41] we deduce that there is a projective
transformation β carrying V to V ′. The variety S of smooth cubic
fourfolds admitting a triflection is irreducible, so that one can speak of
a generic such fourfold. To see this irreducibility, decompose the space
of cubic forms into eigenspaces under a triflection; it turns out that
only one of these eigenspaces contains smooth cubics. Furthermore,
a generic such fourfold admits only one triflection (and its inverse).
Since V and V ′ admit the triflections σ±1 and are generic points of S,
β carries the fixed-point set T of σ in V to the fixed-point set T ′ of σ
in V ′. That is, T and T ′ are projectively equivalent.

We have proven that the period map from M0 to PΓ\CH10 is
generically injective, and the previous lemma shows that it is a local
isomorphism. It follows that it is an isomorphism onto its image. �

In [40], van Geemen and Izadi discuss the notion of a positive half-
twist V1/2 for a Hodge structure V on which a CM field k acts. In our
case V is the primitive H4 of the cyclic cubic fourfold and k = Q(ω).
Its Tate twist V1/2(1) is a weight one structure of genus eleven, and so
corresponds to an abelian variety. These special abelian varieties are
parametrized by an orbit of U(1, 10) ⊂ Sp(11, R). In our approach we
use V directly to find the ball quotient via an imbedding U(1, 10) ⊂
SO(2, 20). In both approaches the Griffiths residue calculus is used to
prove a Torelli theorem.



CHAPTER 2

The Discriminant near a Chordal Cubic

In the next chapter we will enlarge the domain of the period map
C0 → PΓ\CH10, in order to obtain a map from a compactification

of M0 to the Baily-Borel compactification PΓ\CH10. In order to do
this we will need to understand the local structure of the discriminant
∆ ⊆ C0, at least near the threefolds to which we will extend g. In
[1] (see also [42]), the GIT-stability of cubic threefolds is completely
worked out. There is one distinguished type of threefold, which we
call a chordal cubic, which is the secant variety of the rational normal
quartic curve. Except for the chordal cubics and those cubics that are
GIT-equivalent to them, a cubic threefold is semistable if and only if it
has singularities only of types A1, . . . , A5 and D4. At such a threefold
the local structure of ∆ is given by Lemma 1.5.

The rest of this chapter addresses the nature of ∆ near the chordal
cubic locus. It turns out (see the remark following Theorem 4.1) that
the period map PC0 → PΓ\CH10 does not extend to a regular map

PCss → PΓ\CH10. The problem is that it does not extend to the
chordal cubic locus. Therefore it is natural to try to enlarge the do-

main of the period map not to PCss but rather to (P̂C)ss, where P̂C
is the blowup of PC along the closure of the chordal cubic locus. The
details concerning the GIT analysis and the extension of the period
map appear in chapter 3; at this point we are only motivating the
study of the local structure of the proper transform ∆̂ of ∆ along the
exceptional divisor E. Recall that we defined ∆ as a subset of C, but
will also write ∆ for its image in PC.

If T ∈ PC is a chordal cubic then we write ET for π−1(T ) ⊆ E,

where π is the natural projection P̂C → PC. (There are a number of
projection maps in this monograph, such as πT and πV in chapter 1,
and some others introduced later. To keep them straight, we will use
a subscript to indicate the domain for all of them except this one.) ET

may be described as the set of unordered 12-tuples in the rational nor-
mal curve RT which is the singular locus of T . To see this, one counts
dimensions to find that the chordal cubic locus has codimension 13 in

16
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PC, so ET is a copy of P 12. To identify ET with the set of unordered
12-tuples in RT , consider a pencil of cubic threefolds degenerating to
T . The 12-tuple may be obtained as the intersection of RT with a
generic member of the pencil; since RT has degree 4, this intersection
consists of 12 points, counted with multiplicity. (If every member of
the pencil vanishes identically on RT then the pencil is not transverse
to the chordal cubic locus.) We will indicate an element of ET by a
pair (T, τ), where τ

We will describe ∆̂ ⊆ P̂C by proving the following two theorems,
which are similar to but weaker than Lemma 1.5. The first is weaker
because it asserts a homeomorphism with a standard model of the dis-
criminant, rather than a biholomorphism. The second gives a complex-
analytic isomorphism, but refers to a finite cover of (an open set in)

P̂C, branched over E. But we don’t know any reason that the homeo-
morphism is Theorem 2.1 couldn’t be promoted to a biholomorphism.

Theorem 2.1. Suppose T is a chordal cubic and τ is a 12-tuple in
RT , with m singularities, of types An1

, . . . , Anm
, where an An singular-

ity means a point of multiplicity n + 1. Let Ki=1,...,m be the base of a
miniversal deformation of an Ani

singularity, with discriminant locus

∆i ⊆ Ki. Then there is a neighborhood U of (T, τ) in P̂C homeomor-
phic to B1 × K1 × · · · × Km × BN , where N = 33 − ∑

dim Ki, such
that E corresponds to

{0} × K1 × · · · × Km × BN

and U − ∆̂ to

B1 × (K1 − ∆1) × · · · × (Km − ∆m) × BN .

In particular,

π1

(
U − (∆̂ ∪ E)

) ∼= Z × Bn1+1 × · · · × Bnm+1 ,

where the Z factor is generated by a meridian of E and the standard

generators of the braid group factors are meridians of ∆̂.

Theorem 2.2. Suppose (T, τ), m, n1, . . . , nm, K1, . . . , Km, ∆1, . . . ,
∆m and N are as in Theorem 2.1. Then there exists a neighborhood U

of (T, τ) in P̂C biholomorphic to B1 × B33, with U ∩ E corresponding
to {0} × B33, such that the following holds. We write β : Ũ → U for

the 6-fold cover of U branched over U ∩E, meaning that Ũ is obtained
from U ∼= B1 × B33 by the base extension t 7→ t6 of the B1 factor.
We write (T, τ)∼ for the point β−1(T, τ). There is a neighborhood V of
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(T, τ)∼ in Ũ biholomorphic to B1 × K1 × · · · × Km × BN , such that

(2.1) V ∩ β−1(E) = {0} × K1 × · · · × Km × BN

and

(2.2) V − β−1(∆̂) = B1 × (K1 − ∆1) × · · · × (Km − ∆m) × BN .

The rest of this chapter is devoted to proving Theorems 2.1 and 2.2.
It is rather technical, especially Lemma 2.11 and beyond; although
these theorems are analogues of Lemma 1.5, the proofs are much more
complicated.

Lemma 2.3. Suppose T is a chordal cubic and (T, τ) ∈ ET .

(i) (T, τ) lies in ∆̂ if and only if τ has a multiple point.
(ii) If τ has a point of multiplicity n + 1, then (T, τ) is a limit of

points of P̂C representing cubic threefolds with An singulari-
ties.

Nowhere else in the monograph do we refer to any result or notation
introduced from here to the end of this chapter.

When we refer to the “standard chordal cubic”, we mean the one
defined by

(2.3) F (x0, . . . , x4) = det




x0 x1 x2

x1 x2 x3

x2 x3 x4



 = 0 ,

which is the secant variety of the rational normal curve parameterized
by

(2.4) s 7→ [1, s, s2, s3, s4] (s ∈ P 1).

As always, T is the threefold defined by F . We will abbreviate RT to
R We write P for the point [1, 0, 0, 0, 0].

Because PGL5C acts transitively on the chordal locus, many ques-
tions regarding local structure can be reduced to questions concerning a
suitable linear space transverse to to it. The one we use is the following:

Gu1,...,u12
= F + x3

4 + u1x
2
4x3 + u2x4x

2
3 + u3x

3
3 + u4x

2
3x2

+ u5x3x
2
2 + u6x

3
2 + u7x

2
2x1 + u8x2x

2
1

+ u9x
3
1 + u10x

2
1x0 + u11x1x

2
0 + u12x

3
0 ;

(2.5)

see below for the claimed transversality. The first key property of
Gu1,...,u12

is that it restricts to R as the polynomial

(2.6) s12 + u1s
11 + u2s

10 + · · · + u11s + u12 .
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The second key property is that the singularities at P of the members
of 〈F, Gu1,...,u12

〉 correspond to the degree of vanishing of (2.6). This is
the reason we chose this particular family.

Lemma 2.4. For λ 6= 0, F +λ(Gu1,...,u12
−F ) has an An singularity

at P if and only if Gu1,...,u12
|R has an An singularity there—i.e., if and

only if (2.6) vanishes to order exactly n + 1 at s = 0. Furthermore,
{G0,u2,...,u12

} provides a versal deformation of the A11 singularity of
G0,...,0.

Proof. We verified this by writing down the local defining equa-
tion at P and recognizing the singularities using the method of [1,
sec. 2]. This amounted to applying a succession of local coordinate
changes until the singularity was in a standard form (semiquasiho-
mogeneous with lowest-weight terms defining an isolated singularity).
Conceptually, what is going on is that the Jacobian scheme of Gu1,...,u12

contains the “infinitesimal segment of R of length n” whenever the
last n + 1 subscripts are zero. Formally, we mean the 0-dimensional
subscheme Xn of R, of length n, supported at P . A geometric way to
phrase the recognition method [9, Lemma 1 and corollary] for the singu-
larities is that a generic hypersurface whose Jacobian scheme contains
Xn has an An singularity there. So the calculations served merely to
verify something we expected to be true. The particular case of G0,...,0

is an A11 singularity, and verifying this case will give the reader a full
understanding of the method.

Our picture also makes visible the fact that {G0,u2,...,u12
} provides

a versal deformation of the A11 singularity of G0,...,0. Formally, this is
the assertion that their restrictions to the Jacobian scheme X11 span
the coordinate ring of X11 as a vector space. This is visible because
G0,1,0,...,0 vanishes along X11 to order exactly 10, G0,0,1,0,...,0 to order
exactly 9, etc. �

Lemma 2.5. Each pencil 〈F, Gu1,...,u12
〉 is transverse to the chordal

locus at T ∈ PC.

Proof. The key point is that a pencil of cubics through T is trans-
verse to the chordal locus if and only if some member of it is nonzero
at some point of R. To see this, use the easily verified fact that GL2C
acts on C as

Sym3Sym4(C2) ∼= Sym12C2 ⊕ Sym8C2 ⊕ Sym6C2 ⊕ Sym4C2 ⊕ C ,

with the summands having dimensions 13, 9, 7, 5 and 1, and the C
summand spanned by F . Because the tangent space of the chordal lo-
cus at T ∈ PC has codimension 13, it must be the sum of the 9-, 7- and



20 2. THE DISCRIMINANT NEAR A CHORDAL CUBIC

5-dimensional summands. Also, restriction of a cubic form to R gives
a PGL2C-equivariant map from C to Sym12C2. Therefore the kernel
of this restriction map consists exactly of the 9-, 7- and 5-dimensional
summands. We have just seen that this is the tangent space to the
chordal locus, completing the proof. �

Proof of Lemma 2.3: To prove (i), we may restrict attention
to the PGL2C-invariant linear space H ⊆ PC complementary to the
chordal locus at T . (The complement (2.5) is not invariant, so this
is a different complement.) We must show that the tangent cone of
∆ ∩ H at T is the classical discriminant of binary forms of degree 12.
We use the main result of [34], which describes the tangent cone to the
discriminant in any family of hypersurfaces. The family we apply it to
is the restriction to H of the universal family over PC. The result is
that there is a rational map φ from the singular locus R of T to the
projectivized cotangent space to H at T , and subvarieties {Zα} of R,
such that the projective tangent cone to ∆∩H at T is the set-theoretic
union of the dual varieties of the φ(Zα). The PGL2C symmetry makes
this easy to apply. First, the locus where φ is regular is invariant, so
it is all of R, so φ is regular. The same argument shows that there is
only one Zα, namely all of R, so the projective tangent cone to ∆∩H
is the variety dual to φ(R). Also, we saw in the proof of Lemma 2.5
that PGL2C acts on TT H as Sym12C2. There is a unique 1-dimensional
orbit in PSym12C2, namely the rational normal curve of degree 12, so
the PGL2C-equivariance forces φ(R) to be this curve. Now, the dual
variety of a rational normal curve of degree d in P d is the discriminant of
binary forms of degree d, so we have successfully identified the tangent
cone of ∆ ∩ H .

Now we prove (ii). We take T to be the standard chordal cubic,
and place the multiple point of τ at P ∈ R. We suppose without loss
of generality that [0, 0, 0, 0, 1] ∈ R is not one of the points of τ . Since
τ has no point at s = ∞, there is a choice of u1, . . . , u12 such that τ is
the limiting direction of the pencil 〈F, Gu1,...,u12

〉. Since τ has a point of
multiplicity n + 1 at P , we have u12 = · · · = u12−n = 0 and u11−n 6= 0.
Then Lemma 2.4 shows that a generic member of the pencil has an An

singularity at P . This proves (ii). �

Because of the action of PG, proving Theorems 2.1 and 2.2 reduces
to a similar but lower-dimensional problem. Let T be the standard
chordal cubic. In our arguments, the 12-tuple consisting of 12 points all
concentrated at P will play a special role; we call it τ0. Distinguishing
τ0 breaks the PGL2C symmetry, leaving only the subgroup C ⋊ C∗
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stabilizing a point, of codimension 22 in PG. We will describe a

neighborhood of (T, τ0) ∈ P̂C in terms of a decomposition B̂ × B22,

where B̂ is P 12 blown up at a point and B22 is the 22-ball. Namely, let
A be the affine 11-space in PC consisting of the G0,u2,...,u12

of (2.5). Let

B be the projective space spanned by A and T , and B̂ be its proper
transform. Lemma 2.5 shows that B is transverse to the chordal cubic
locus at T , so over a neighborhood of T , B̂ is just P 12 blown up at a

point. B̂ is where most of our work will take place. Choose a ball
B22 ⊆ PG transverse to C⋊C∗ at 1; we will show that, after shrinking

B22, (T, τ0) has a neighborhood B̂×B22, the second factor representing
22 “trivial directions”.

Lemma 2.6. The map B̂ × B22 → P̂C given by (b, g) 7→ b.g is a
local biholomorphism at

(
(T, τ0), 1

)
.

Proof. We write Y for the PG-orbit of (T, τ0). We must prove

that Y and B̂ are transverse in P̂C at (T, τ0). Since B is transverse
to the chordal cubic locus at T (Lemma 2.5), it suffices to prove that

Y ∩ET and B̂ ∩ET are transverse in ET at (T, τ0). We use u1, . . . , u12

as coordinates around (T, τ0) in ET as in the proof of Lemma 2.3. Then

B̂ ∩ ET has equation u1 = 0. And Y ∩ ET is the curve consisting of
binary 12-tuples

(s − λ)12 = s12 + 12λs11 + · · ·+ λ12 ,

which passes through (T, τ0) when λ = 0 and is transverse to B̂ there
because the s11 coefficient (i.e., the u1-coordinate) is linear in λ. �

Remark. It doesn’t matter for us, but we note that B̂ and Y are
not transverse everywhere. Since Y ∩ ET is a rational normal curve

of degree 12 and B̂ ∩ ET is a hyperplane in ET , they intersect in 12
points, counted with multiplicity. Besides (T, τ0), the only place they
intersect is at λ = ∞, so they make 11th-order contact there.

The analogues of Theorems 2.1 and 2.2 in this lower-dimensional
setting are the following. It turns out (see the proof of Theorem 2.1)
that restricting attention to τ0, rather than treating general τ , is suffi-
cient.

Theorem 2.7. There exists a neighborhood U ′ of (T, τ0) in B̂ which
is homeomorphic to B1 × (U ′ ∩ E), such that U ′ ∩ E corresponds to

{0} × (U ′ ∩ E) and U ′ ∩ ∆̂ to B1 × (U ′ ∩ E ∩ ∆̂).

Theorem 2.8. There exists a neighborhood U ′ of (T, τ0) in B̂ which
is biholomorphic to B1 ×B11, with U ′ ∩E corresponding to {0}×B11,
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such that the following holds. As in Theorem 2.2, write β : Ũ ′ → U ′

for the 6-fold cover of U ′ branched over U ′ ∩E, meaning that Ũ ′ is got
from U ∼= B1 ×B11 by the base extension t 7→ t6 of the B1 factor. And
write (T, τ0)

∼ for the preimage in Ũ ′ of (T, τ0). There is a neighborhood

Ṽ ′ of (T, τ0)
∼ in Ũ ′, and a neighborhood W ′ of (T, τ0) in B̂ ∩ E, such

that Ṽ ′ is biholomorphic to B1 × W ′, such that

Ṽ ′ ∩ β−1(E) = {0} × W ′

and
Ṽ ′ ∩ β−1(∆̂) = B1 ×

(
W ′ ∩ ∆̂

)
.

These theorems describe ∆̂ in a neighborhood of (T, τ0) in B̂ ∩ E
in terms of its intersection with E. Therefore we need to understand
B̂ ∩ E ∩ ∆̂:

Lemma 2.9. Suppose (T, τ) ∈ B̂∩E, and that none of the points of
τ is [0, 0, 0, 0, 1]. Let m, n1, . . . , nm, K1, . . . , Km and ∆1, . . . , ∆m be as
in Theorem 2.1. Let N ′ = 11−∑

dim Ki. Then there is a neighborhood

Z of (T, τ) in B̂ ∩E biholomorphic to K1 × · · · ×Km ×BN ′

, such that

Z − ∆̂ corresponds to

(K1 − ∆1) × · · · × (Km − ∆m) × BN ′

.

Proof. Using coordinates u2, . . . , u12 on E ∩ B̂ around (T, τ0) as
in the proof of Lemma 2.3, and parameterizing R by s as in (2.4), the
τ ’s treated in this lemma are parameterized by the functions

f(s) = s12 + u2s
10 + · · · + u11s + u12 ,

i.e., by the monic polynomials with root sum equal to zero. The lemma
amounts to the assertion that any singular function in this family ad-
mits a simultaneous versal deformation of all its singularities, within
the family. The family of functions

(2.7) (s − s0)
n + c2(s − s0)

n−2 + · · ·+ cn−1(s − s0) + cn

provides a versal deformation of (s − s0)
n, with every member of the

family having the same root sum, namely ns0. Given f as above,
we may take a product of terms like (2.7), one for each singularity of
f . This obviously provides a simultaneous versal deformation, and the
root sum of any member of the family is that of f , namely 0. Therefore

the versal deformation lies in B̂ ∩ E. �

Proof of Theorem 2.1, given Theorem 2.7; First, we claim
that (T, τ0) has a neighborhood Z in B̂ ∩ E and a neighborhood U
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in P̂C, such that U is homeomorphic to B1 × Z × B22, with U ∩ E

corresponding to {0} × Z × B22 and U ∩ ∆̂ to B1 × (Z ∩ ∆̂) × B22.

To get this, apply Theorem 2.7 to obtain U ′ ⊆ B̂ with the properties
stated there, and set Z equal to U ′∩E. By shrinking U ′ and B22 ⊆ PG

if necessary, we may suppose by Lemma 2.6 that U ′ × B22 → P̂C is a

biholomorphism onto a neighborhood of (T, τ0) in P̂C, which we take
to be U . Then

U ∼= U ′ × B22 ∼= B1 × (U ′ ∩ E) × B22 = B1 × Z × B22 .

Here, the first ‘∼=’ is a biholomorphism and the second is a homeomor-
phism. Also, U ∩ E corresponds to (U ′ ∩ E) × B22 = {0} × Z × B22,

and U ∩ ∆̂ to (U ′ ∩ ∆̂) × B22 = B1 × (Z ∩ ∆̂) × B22.

Observe that by the nature of the claim, the same conclusions ap-
ply when τ0 is replaced by any τ ∈ Z. The point is that Z is a
neighborhood of τ as well as of τ0, so we can use the same Z and U .

Now we use Lemma 2.9, which describes Z ∩ ∆̂ (possibly after
shrinking Z to a smaller neighborhood of (T, τ), which shrinks U).
The result is that U is homeomorphic to

B1 × K1 × · · · × Km × BN ′ × B22 ,

such that

U ∩ E = {0} × K1 × · · · × Km × BN ′ × B22

and

U − ∆̂ = B1 × (K1 − ∆1) × · · · × (Km − ∆m) × BN ′ × B22 .

Therefore Theorem 2.1 holds for (T, τ).

We have proven the theorem for every (T, τ) ∈ Z, and we will
complete to proof by observing that every (T, τ ′) ∈ ET is PGL2C-
equivalent to some element of Z. This is because one can use a
1-parameter group to push the 12 points of τ ′ together, so that τ ′

approaches τ0. �

The proof of Theorem 2.2, given Theorem 2.8, is essentially the
same. Therefore it remains only to prove Theorems 2.7 and 2.8. We
will treat Theorem 2.8 first.

Lemma 2.10. In a neighborhood of (T, τ0), B̂ ∩ ∆ = B̂ ∩ ∆̂.

Proof. By Lemma 2.6, we may choose a neighborhood U ′ of (T, τ0)

in B̂, and shrink B22 ⊆ PG if necessary, so that U ′ × B22 → P̂C is

a biholomorphism onto a neighborhood of (T, τ0) in P̂C. Under this
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identification, ∆̂ − E corresponds to
(
(∆̂ − E) ∩ U ′

)
× B22. To get

B̂ ∩ ∆̂, we take the closure and then intersect with U ′ × {point}, and

to get B̂ ∩ ∆, we intersect with U ′×{point} and then take the closure.
Clearly, both give the same result. �

The following technical lemma is impossible to motivate without
seeing its use in the proof of Theorem 2.8; the reader should skip it
and refer back when needed.

Lemma 2.11. Suppose δ(u2, . . . , u12) is a quasihomogeneous poly-
nomial of weight 132, where wt(ui) = i. Suppose also that the u11

12 and
u11−i

12 ui
11ui (i = 11, . . . , 2) terms of δ have nonzero coefficients. Suppose

g : (C11, 0) → (C11, 0) is the germ of a diffeomorphism such that δ ◦ g
has no terms of weight < 132. Then g preserves the weight filtration,
in the sense that

(2.8) ui ◦ g = ciui + pi(u2, . . . , u12) + qi(u2, . . . , u12)

for each i, where ci is a nonzero constant, pi is quasihomogeneous of
weight i with no linear terms, and qi is an analytic function whose
power series expansion has only terms of weight > i.

Proof. We write vi for ui ◦g, regarded as a function of u2, . . . , u12.
One obtains (δ ◦ g)(u2, . . . , u12) by beginning with δ(u2, . . . , u12) and
replacing each ui by vi(u2, . . . , u12). This leads to a big mess, with the
coefficients of δ ◦ g depending on those of δ and the vi in a complicated
way. Nevertheless, there are some coefficients of δ ◦g to which only one
term of g can contribute, and this will allow us to deduce that various
coefficients of the vi vanish. To be able to speak precisely, we make the
following definitions. When we refer to a term or monomial of δ (resp.
vi), we mean a monomial whose coefficient in δ (resp. vi) is nonzero.
If m is a monomial ui1 · · ·uin, and µj(u2, . . . , u12) is a monomial of vij

for each j, then we say that m produces the monomial

µ = µ1(u2, . . . , u12) · · ·µn(u2, . . . , u12) .

For example, if v12 = u12 + u2
2 and v11 = u11 + u2, then m = u2

12u11

produces the monomials u2
12u11, u12u

2
2u11, u4

2u11, u2
12u2, u12u

3
2 and u5

2.
When we wish to be more specific, we say that m produces µ by sub-
stituting µj for each uij . Continuing the example, we would say that
u2

12u11 produces u12u
3
2 by substituting u12 for one factor u12 of m, u2

2 for
the other, and u2 for the factor u11. We note that even if a monomial
m of δ produces a monomial µ, the coefficient of µ in δ ◦ g (or even in
m ◦ g) may still be zero, because of possible cancellation.
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We will prove the lemma by proving the following assertions Ad by
increasing induction on d, and we will prove each Ad by proving the
assertions Bd,i by decreasing induction on i. The B1,i require special
treatment, particularly B1,12 and B1,11.

Assertion Ad: No vi has any term of degree ≤ d and weight < i.

Assertion Bd,i: vi has no term of degree d and weight < i.

Proof of B1,12: Consider the monomial µ = u11
j for some j < 12.

The only monomial of δ of degree 11 is m = u11
12, so m is the only

monomial of δ that could produce µ. If v12 had a term uj, then µ
would be a term of δ ◦ g. This is impossible because wt µ < 132.

Proof of B1,11: Consider the monomial µ = u12
j for j < 11. We study

a monomial m of δ and a monomial m′ it produces, and investigate
the conditions under which m′ = µ. First note that m = u11

12 does
not produce µ, because deg m′ = 12 requires a linear substitution for
10 of the factors, and then B1,12 implies that m′ is divisible by u10

12.
Similarly, if m has degree 12 then the only substitutions yielding m′

with degree 12 are linear substitutions. If u12|m then B1,12 implies
u12 |m′, so m′ 6= µ. The only degree 12 monomial of weight 132 not
divisible by u12 is m = u12

11, so this m is the only monomial of δ that
can produce µ. If v11 had a term uj, then δ ◦ g would have a term µ,
which is impossible since wt µ < 132.

Having proven B1,12 and B1,11, we observe that v12 has a linear term
because g is a diffeomorphism, and since v12 has no term u11, . . . , u2, it
does have a term u12. Similarly, using B1,11 and the fact that v11 and
v12 have linearly independent linear parts, we see that v11 has a u11

term. We will use these facts in the rest of the proof.

Proof that B1,12, . . . ,B1,i+1 imply B1,i (i = 10, . . . , 2): Consider µ =
u11−i

12 ui
11uj for some j < i, and let m and m′ be as before. If m = u11

12

then deg m′ = 12 requires that 10 of the 11 substitutions be linear.
Then B1,12 implies u10

12 |m′, so m′ 6= µ. If deg m = 12 then deg m′ = 12
requires that all substitutions be linear. If all the factors of m are
among u12, . . . , ui+1, then B1,12, . . . ,B1,i+1 imply wt m′ ≥ wt m = 132,
so m′ 6= µ. So suppose some factor is uk≤i. Now we use B1,12 again, to
conclude that m′ is divisible by at least as many powers of u12 as m is.
Therefore we can only have m′ = µ if number number (say p) of u12’s
in m satisfies p ≤ 11 − i. We have shown

m = up≤11−i
12 · uk≤i · (11 − p other factors, none of which is u12).
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The average weight of the 11 − p other factors is

132 − 12p − k

11 − p
≥ 11 ,

with equality only if p = 11 and k = i. This completely determines m,
forcing m = u11−i

12 ui
11ui. If vi had a term uj<i, then m◦g and hence δ◦g

would have a term u11−i
12 ui

11uj, of weight < 132, contrary to hypothesis.
(This uses the fact that v12 does have a term u12 and v11 does have a
term u11.)

A0 and all the Bd,1 are vacuously true.

Proof that Ad−1 and Bd,12, . . . ,Bd,1 imply Ad (d ≥ 1): trivial.

Proof that Ad implies Bd+1,12 (d ≥ 1): We follow the strategy and
notation of the previous steps. Take µ = u10

12 t where t is a monomial
of degree d + 1 and weight < 12. If deg m ≥ 12, then the only way for
deg m′ to equal deg µ = 11 + d is for the substitution to replace every
factor of m with a monomial of degree ≤ d. Then Ad implies that
wt m′ ≥ wt m = 132, so m′ 6= µ. So m = u11

12 is the only monomial of δ
that can produce µ. If v12 had a term t, then δ ◦ g would have a term
u10

12 t, of weight < 132, contrary to hypothesis.

Proof that Ad and Bd+1,12, . . . ,Bd+1,i+1 imply Bd+1,i (d ≥ 1 and
i = 11, . . . , 2): Take µ = u11−i

12 ui
11t, where t is a monomial of degree

d + 1 and weight < i. If m = u11
12, then deg m′ = deg µ(= 12 + d)

requires that all substitutions are of degree ≤ d + 1, or one has degree
d + 2 and the rest are linear. In the first case, Ad and Bd+1,12 imply
wt m′ ≥ wt m = 132, so m′ 6= µ. In the second case, B1,12 implies
u10

12 |m′, so again m′ 6= µ.

If deg m > 12 then deg m′ = deg µ requires that every factor of
m be substituted by a monomial of degree ≤ d. Then Ad implies
wt m′ ≥ wt m = 132, so m′ 6= µ. The same argument works in the
case deg m = 12 unless one the substitutions has degree d + 1 and the
rest are linear. If the factor for which the degree d + 1 substitution is
made is one of u12, . . . , ui+1, then A1 and Bd+1,12, . . . ,Bd+1,i+1 imply
wt m′ ≥ wt m = 132, so m′ 6= µ. So the exceptional substitution is
in a factor uk≤i of m; in particular, m has such a factor. Then one
follows the proof of B1,i to show m = u11−i

12 ui
11ui. If vi had a term t,

then m◦ g, hence δ ◦ g, would have a term µ, of weight < 132, contrary
to hypothesis.

The induction proves A1, . . . ,A5 successively, and A5 implies that
the vi have no terms other than those in (2.8). To see that ci 6= 0 for
all i, apply the argument used to prove that v12 (resp. v11) has a term
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Ṽ ′ ⊆ B1 × W ⊆ C × Ayα:(λ,w)7→(λ,η
λ−1ρ

λ
(w))

Ũ ′ ⊆ C × Ayβ:(λ,a)7→(λ6,a)

U ′ ⊆ C × A C × Ayγ:(λ,a)7→F+λ(a−F )

y

B̂
π−−−−→ By

y

P̂C π−−−−→ PC

Figure 1. Maps defined in the proof of Theorem 2.8.

u12 (resp. u11). Namely, B1,12, . . . ,B1,i plus the linear independence of
the linear parts of v12, . . . , vi imply that vi has a term ui. �

Proof of Theorem 2.8: We will introduce a number of sets and
maps and we hope figure 1 will help the reader keep them organized.
We begin by defining γ : C × A → B by γ(λ, a) = F + λ(a − F ). For
fixed a, this pencil defines a direction at T , transverse to the chordal
locus (Lemma 2.5), hence a point of the exceptional fiber ET over T .

Therefore we regard γ as defining a map C × A → B̂, also denoted γ,
with γ(0, a) being this point of ET . In particular, γ(0, G0,...,0) = (T, τ0).
We are being slightly sloppy, because we should check that F +λ(a−F )
is in the chordal locus only when λ = 0. (Otherwise, we’d have to blow

up C × A to get a map to B̂.) But γ is well-defined as a map to B̂ on
a neighborhood U ′ of (0, G0,...,0) in C ×A, biholomorphic to B1 ×B11,
with {0} × B11 being the locus λ = 0. This uses the transversality
established in Lemma 2.5. Strictly speaking, we shouldn’t refer to γ as

a map C×A → B̂ but rather U′ → B̂. But the reader will lose nothing
by thinking of U ′ as being all of C × A, so we will not be this picky.

We realize the base extension by defining β : C × A → C × A by
β(λ, a) = (λ6, a), and we define Ũ ′ as β−1(U ′). As for U ′, the reader

will lose nothing by thinking of Ũ ′ as all of C × A.

The first idea (of five) is to use a 1-parameter group to work out a

defining equation for (γ ◦ β)−1(∆̂) in terms of a defining equation for
∆∩A. We write δ′ for the defining equation for ∆∩A with respect to
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the coordinates u2, . . . , u12. Our basic tool is the 1-parameter subgroup

(2.9) σλ : (x0, . . . , x4) 7→ (λ−2x0, λ
−1x1, x2, λx3, λ

2x4)

of G. For λ 6= 0, (γ ◦ β)(λ, u2, . . . , u12) lies in ∆ if and only if its image
under σ−1

λ does. This image is
(
γ ◦ β(λ, u2, . . . , u12)

)
.σ−1

λ

=
(
F + λ6x3

4 + λ6u2x4x
2
3 + · · ·+ λ6u12x

3
0

)
.σ−1

λ

= F + x3
4 + λ2u2x4x

2
3 + · · ·+ λ12u12x

3
0 ,

which is the point of A with coordinates (λ2u2, . . . , λ
12u12). Therefore

a defining equation for (γ ◦ β)−1(∆̂) in C∗ × A is

(2.10) δ′(λ2u2, . . . , λ
12u12) = 0 .

The second idea is to determine the lowest-weight terms of δ′, with

respect to the weights wt(ui) = i, by using our knowledge of ∆̂∩E. The
closure in C×A of the variety (2.10) meets {0}×A in the variety defined
by δ′

lowest
(u2, . . . , u12), where δ′

lowest
consists of the lowest-weight terms

of δ′. By Lemma 2.10, we have B̂ ∩ ∆ = B̂ ∩ ∆̂ near (T, τ0). Therefore

δ′
lowest

defines (γ ◦ β)−1(E ∩ ∆̂) ⊆ {0}×A. By Lemma 2.3(i), we know

that ET ∩ ∆̂ consists of those (T, τ) where τ has a multiple point. This
forces δ′

lowest
to be a power of the standard A11 discriminant δ, which

is defined by the property that δ(u2, . . . , u12) = 0 if and only if

s12 + u2s
10 + u3s

9 + · · · + u12

has a multiple root. Since δ is quasihomogeneous of weight 132, we
have

(2.11) δ′(u2, . . . , u12) = δ(u2, . . . , u12)
p + (terms of weight > 132p)

for some p ≥ 1. Although it is not essential, we will soon see that
p = 1.

The third idea is to use singularity theory to describe ∆ ∩ A in a
neighborhood of G0,...,0, in terms of a different set of local coordinates.
We saw in Lemma 2.4 that G0,...,0 has an A11 singularity at P (and
no others, as one may check), and that the family A provides a versal
deformation for it. Therefore there is a neighborhood W of G0,...,0 in
A such that ∆ ∩ W is a copy of the standard A11 discriminant. That
is, there are analytic coordinates v2, . . . , v12 on W , centered at G0,...,0,
such that ∆ ∩ W is defined by δ(v2, . . . , v12) = 0. This tells us that
p = 1, because δ′(u2, . . . , u12) = 0 and δ(v2, . . . , v12) = 0 are defining
equations for the same variety, so in particular they vanish to the same
order at the origin. We suppose without loss of generality that W is



2. THE DISCRIMINANT NEAR A CHORDAL CUBIC 29

the unit polydisk with respect to the vi coordinate system. It is on
B1 × W ⊆ C × A that we will soon define the remaining map α.

The fourth idea is to use a sort of rigidity of the A11 discriminant.
Briefly: since the variety defined by δ(u2, . . . , u12) = 0 is close to that
defined by δ(v2, . . . , v12) = 0, the ui must be close to the vi. This
relationship between coordinate systems will be crucial later in the
proof. To make this idea precise, consider the biholomorphism-germ
g of W at G0,...,0 given by ui ◦ g = vi. Since the image of the locus
δ(v2, . . . , v12) = 0 is the locus δ(u2, . . . , u12) = 0, and since the first of
these is also the locus δ′(u2, . . . , u12) = 0, we have δ ◦ g = δ′. Now,
a computer calculation using Maple [26] shows that the 11 terms of
δ specified by the hypothesis of Lemma 2.11 are nonzero, and (2.11)
implies that δ′ has no terms of weight < 132. The lemma then implies

(2.12) vi = ciui + pi(u2, . . . , u12) + qi(u2, . . . , u12) ,

where the ci, pi and qi have the properties stated there. We will need
the inverse of this, giving the ui in terms of the vi. To compute this it
suffices to work in the formal power series ring; one writes (2.12) as

ui =
1

ci
vi −

1

ci
pi(u2, . . . , u12) −

1

ci
qi(u2, . . . , u12) ,

substitutes these expressions into themselves, and repeats this process
infinitely many times. The result is

(2.13) ui = c′ivi + p′i(v2, . . . , v12) + q′i(v2, . . . , v12) ,

where the c′i, p′i and q′i satisfy the same conditions as the ci, pi and qi,
with respect to the weights wt(vi) = i.

The fifth idea is to combine the quasihomogeneous scalings of the
ui and vi to define a map α whose image will be the set Ṽ ′ whose
existence is claimed by the theorem. For every 0 < |λ| < 1 we define
ρλ : W → W to be the quasihomogeneous scaling with respect to the
v-coordinates:

ρλ(v2, . . . , v12) = (λ2v2, . . . , λ
12v12) .

For every λ ∈ C∗, we define ηλ : A → A to be the quasihomogeneous
scaling with respect the the u-coordinates:

ηλ(u2, . . . , u12) = (λ2u2, . . . , λ
12u12) .

The ηλ are related to the 1-parameter group (2.9) by

(2.14) γ ◦ β
(
λ, ηλ−1(a)

)
= σλ(a) ,
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which can be verified by expressing both sides in terms of the u-
coordinates and expanding. We define

α :
(
B1 − {0}

)
× W →

(
B1 − {0}

)
× A

by α(λ, w) = (λ, ηλ−1ρλ(w)). It is easy to see that α is injective.

The first property of α is that the preimage of the discriminant
under it has a very simple form, namely

(2.15) (γ ◦ β ◦ α)−1(∆̂) =
(
B1 − {0}

)
× (∆ ∩ W ) .

To see this, observe that

γ ◦ β ◦ α(λ, w) = γ ◦ β
(
λ, ηλ−1ρλ(w)

)
= σλ

(
ρλ(w)

)
,

using (2.14). The right hand side lies in ∆ if and only if ρλ(w) does,
hence if and only if w does.

The second property of α is that it extends to a holomorphic map
B1 × W → C × A. To prove this, it suffices by Riemann extension to
show that it has a continuous extension. The key step is to compute
limλ→0 α(λ, w). If w ∈ W then its v-coordinates are v2(w), . . . , v12(w),
and the v-coordinates of ρλ(w) are λ2v2(w), . . . , λ12v12(w). Using
(2.13), the u-coordinates of ρλ(w) are

ui

(
ρλ(w)

)
= c′iλ

ivi(w) + p′i
(
λ2v2(w), . . . , λ12v12(w)

)

+ q′i
(
λ2v2(w), . . . , λ12v12(w)

)

= λi ·
(
c′ivi(w) + p′i

(
v2(w), . . . , v12(w)

))

+
(
terms of degree > i in λ

)
.

Therefore the u-coordinates of ηλ−1ρλ(w) are

ui

(
ηλ−1ρλ(w)

)
= λ−iui

(
ρλ(w)

)
= c′ivi(w) + p′i

(
v2(w), . . . , v12(w)

)

+ terms involving λ .

The limit as λ → 0 obviously exists, and provides the desired extension.

The third property of α is that after shrinking W , we may suppose
that α : B1 × W → C × A is a biholomorphism onto its image. To see
this we use the fact that

ui

(
α(0, w)

)
= c′ivi(w) + p′i

(
v2(w), . . . , v12(w)

)
;

since the c′i are nonzero and the p′i have no linear terms, we may shrink
W so that w 7→ α(0, w) is injective. Because α : B1 × W → Ũ ′ is

injective and Ũ ′ is normal, α is a biholomorphism from a neighborhood
Ṽ ′ of (0, G0,...,0) ∈ B1 × W to a neighborhood of (0, G0,...,) ∈ Ũ ′.
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Now we are essentially done. Early on, we defined U ′ ∼= B1 × B11

with the modest properties stated in the lemma, and then its 6-fold
branched cover Ũ ′. We have just defined α as a biholomorphism from
B1 × W to its image in Ũ ′. The theorem promises a neighborhood Ṽ ′

of (T, τ0)
∼ in Ũ ′ in which the discriminant and exceptional divisor have

simple descriptions. In particular, we promised to have Ṽ ′ ∼= B1 × W ′

for a neighborhood W ′ of (T, τ0)
∼ in B̂ ∩ E. We define W ′ as the

(biholomorphic) image of W ⊆ A under w 7→ α(0, w), think of W and
W ′ as the same set, and regard α as a map B1×W ′ → Ũ ′. We define Ṽ ′

as its image. All that remains is to check that Ṽ ′∩β−1(E) = {0}×W ′

and Ṽ ′∩β−1(∆̂) = B1 × (W ′∩ ∆̂). The first of these is just unwinding
definitions, and the second is also, together with (2.15). �

Proof of Theorem 2.7. Theorem 2.8 gives us an analytic de-
scription of the 6-fold branched cover Ṽ ′ of a neighborhood of (T, τ0)

in B̂. The idea is to take the quotient by the deck group Z/6 and

see what we get. Recall that Ũ ′ ⊆ C × A, where A ∼= C11, and the
deck group is generated by (λ, a) 7→ (λζ, a), where ζ = eπi/3. We
will write ξ for this map. (T, τ0)

∼ is the point (0, G0,...,0) ∈ Ũ ′. Also,

α : B1 ×W → Ũ ′ is an embedding onto a neighborhood Ṽ ′ of (T, τ0)
∼,

where W is a polydisk around G0,...,0 in A. We can’t regard ξ as a

self-map of B1 ×W , because Ṽ ′ may not be a ξ-invariant subset of Ũ ′.
However, we can take the intersection of the finitely many translates
of Ṽ ′, and let Z ⊆ B1 ×W be the α-preimage of this intersection. The
action of ξ on Z can be worked out by using the definition of α. The
result is ξ(0, w) = (0, w), and

ξ(λ, w) =
(
λζ, ρ−1

λ ◦ ρ−1
ζ ◦ ηζ ◦ ρλ(w)

)

for λ ∈ B1 − {0}. Now, β ◦ α carries Z/〈ξ〉 homeomorphically to

a neighborhood of (T, τ0) in B̂. (T, τ0) corresponds to the image of

(0, G0,...,0), and ∆̂∩B̂ to the image of Z∩
(
B1×(W∩∆̂)

)
. Therefore our

goal is to describe Z/〈ξ〉 and the image therein of Z ∩
(
B1 × (W ∩ ∆̂)

)
.

To take the quotient Z/〈ξ〉, we first observe that the ‘slice of pie’

Σ =
{

λ ∈ B1
∣∣ λ = 0 or Arg λ ∈ [0, π/3]

}

is a fundamental domain for λ 7→ λζ acting on B1, and the quotient
B1/(Z/6) is got by gluing one edge

E0 =
{

λ ∈ B1
∣∣ λ = 0 or Arg λ = 0

}

to the other

Eπ/3 =
{

λ ∈ B1
∣∣ λ = 0 or Arg λ = π/3

}
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in the obvious way. Similarly, Z/〈ξ〉 is homeomorphic to
(
Z ∩ (Σ ×

W )
)
/∼, where ∼ is the equivalence relation that each (s, w) ∈ Z ∩

(E0 × W ) is identified with ξ(s, w) ∈ Z ∩ (Eπ/3 × W ). On the other
hand, consider (Σ × W )/≈, where ≈ is the equivalence relation that
each (s, w) ∈ E0 × W is identified with (sζ, w). The key step in the
proof is the definition of the following map

Φ :
(
Z0 ∩ (Σ × W )

)
/∼ → (Σ × W )/≈ ,

where Z0 is a suitable neighborhood of (0, G0,...,0) in Σ × W , defined
below. The map is Φ(λ, w) = (λ, w) for λ ∈ E0, and

Φ(λ, w) =
(
λ, ρ−1

(Arg λ)/(π/3) ◦ (ρ−1
λ ρ−1

ζ ηζρλ) ◦ ρ(Arg λ)/(π/3)(w)
)

otherwise. Claim: there is a neighborhood Z0 of (0, G0,...,0) in Σ × W
on which Φ is defined, i.e., such that if (λ, w) ∈ Z0 then either λ ∈ E0

or else

(2.16) ηζρλρ(Arg λ)/(π/3)(w) ∈ ρζρλρ(Arg λ)/(π/3)(W ) .

Assuming the claim for a moment, it is easy to complete the proof.
The key point is that the restriction of Φ to Z0∩(E0×W ) is the obvious
inclusion into E0 × W , while the Φ-image of (λ, w) ∈ (Eπ/3 × W ) is
ξ(λζ−1, w). Furthermore, for any (λ, w) ∈ Z0 ∩ (Σ × W ), Φ(λ, w) lies

in Σ × (W ∩ ∆̂) if and only if (λ, w) itself does. (This uses the fact

that the ρλ are quasihomogeneous scalings of W that preserve W ∩ ∆̂.)
It follows that Z/〈ξ〉 is homeomorphic to a neighborhood of (0, G0,...,0)

in (Σ × W )/≈, i.e., in B1 × W , with its intersection with ∆̂ being(
Σ × (∆̂ × W )

)
/≈, i.e., B1 × (∆̂ × W ). This implies the theorem.

All that remains is to construct Z0. First observe that Z contains
B1 × {G0,...,0} ⊆ B1 × W . Therefore Z contains B1

r × W0 for some
0 < r ≤ 1 and some neighborhood W0 of G0,...,0 in W . We claim that Φ
is defined for all (λ, w) ∈ Σr ×W0, so that we may take Z0 = Σr ×W0.
There is nothing to verify if λ ∈ E0, so suppose 0 < Arg λ ≤ π/3. Then
we define λ′ = λ · (Arg λ)/(π/3) and use the fact that |λ′| ≤ |λ|, so
(λ′, w) ∈ Z. Therefore ξ is defined at (λ′, w), which is to say that have
ηζρλ′(w) ∈ ρζρλ′(W ). Plugging in the definition of λ′ yields (2.16). �



CHAPTER 3

Extension of the Period Map

In this chapter we extend the period map g : PC0 → PΓ\CH10

defined in chapter 1 to a larger domain. It turns out that g does
extend to all of PCs but not to PCss. Replacing PΓ\CH10 by its

Baily-Borel compactification PΓ\CH10 allows us to extend g to most
of PCss but not all. The problem is that it does not extend to the
chordal cubic locus. We will see a proof of this in chapter 4, but for
now we just refer to this to motivate the blowing-up of the chordal

cubic locus in PC to obtain P̂C, and extending g to a regular map

(P̂C)ss → PΓ\CH10. In this chapter we will construct the extension;
we rely heavily on Lemma 1.5 and Theorems 2.1 and 2.2, which describe
the local structure of the discriminant. Recall that we write π for the
projection P̂C → PC, E for the exceptional divisor, ET

∼= P 12 for the
points of E lying over a chordal cubic T , and (T, τ) for a point in ET ,
where τ is an unordered 12-tuple in the rational normal curve RT of
which T is the secant variety.

The first thing we need to do is describe (P̂C)s and (P̂C)ss, using

[1] and [33]. To lighten the notation we will write just P̂Cs and P̂Css.
In order to discuss GIT-stability we need to choose a line bundle on

P̂C. The following lemma shows that this choice doesn’t matter very
much; it follows directly from the considerations of [33, sec. 2].

Lemma 3.1. For large enough d, the stable and semistable loci of

P̂C, with respect to the standard SL(5, C)-action on

(3.1) O(−E) ⊗ π∗
(
O(d)

)
,

are independent of d. �

Our notation P̂Cs and P̂Css refers to the linearization (3.1) for large
enough d. Reichstein’s work allows us to describe these sets explicitly:

Theorem 3.2. Suppose T is a cubic threefold not in the closure of

the chordal cubic locus, regarded as an element of P̂C. Then

(i) T is stable if and only if each singularity of T has type A1, A2,
A3 or A4;

33
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(ii) T is semistable if and only if each singularity of T has type
A1, . . . , A5 or D4;

(iii) T is strictly semistable with closed orbit in P̂Css if and only if
T is projectively equivalent to one of the threefolds defined by

x0x1x2 + x3
3 + x3

4

or

FA,B = Ax3
2 + x0x

2
3 + x2

1x4 − x0x2x4 + Bx1x2x3 ,

with A, B ∈ C and 4A 6= B2.

Now suppose instead that T is in the closure of the chordal cubic locus

but is not a chordal cubic. Then every element of π−1(T ) ⊆ P̂C is un-
stable. Finally, suppose that T is a chordal cubic, and τ is an unordered

12-tuple in the rational normal curve RT , so that (T, τ) ∈ ET ⊆ P̂C.
Then

(iv) (T, τ) is stable if and only if τ has no points of multiplicity ≥ 6;
(v) (T, τ) is semistable if and only if τ has no points of multiplicity

greater than 6;

(vi) (T, τ) is strictly semistable with closed orbit in P̂Css if and
only if τ consists of two distinct points of multiplicity 6.

Finally, the points (vi) of P̂C lie in the closure of the union of the
orbits of the TA,B from (iii).

Remarks. The first threefold described in (iii) has three D4 singu-
larities, and is the unique such cubic threefold. The 2-parameter family
TA,B really describes only a 1-parameter set of orbits, because the pro-
jective equivalence class is determined by the ratio 4A/B2 ∈ CP 1−{1}.
These threefolds have exactly two singularities, both of type A5, except
when A = 0, when there is also an A1 singularity. Every cubic three-
fold with two A5 singularities is projectively equivalent to one of these.
If 4A and B2 were allowed to be equal and nonzero, then FA,B would
define a chordal cubic. All of these assertions are proven in section 5
of [1].

Proof. Throughout the proof, we will write L ⊆ PC for the closure
of the chordal cubic locus. By Theorems 2.1 and 2.3 of [33], a point of

P̂C − E is unstable as an element of P̂C if and only if either (a) it is
unstable as an element of PC, or (b) it is GIT-equivalent in PC to an
element of L. Referring to the stability of cubic threefolds, given by

Theorems 1.3 and 1.4 of [1], this says that P̂Css − E is the set of T ’s
having no singularities of types other than A1, . . . , A5 and D4. This
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justifies (ii). The same theorems of [33] say that a point of P̂C − E is

stable as an element of P̂C if and only if it is stable as an element of

PC. Referring again to [1], this says that P̂Cs−E is the set of T having
no singularities of types other than A1, . . . , A4, justifying (i). Now we

prove (iii). If T ∈ P̂Css − E is not in P̂Cs, then it has a singularity of
type A5 or D4. Then Theorem 1.3(i,ii) of [1] implies that T is GIT-

equivalent in PC, hence in P̂C, to one of the threefolds given in (iii).
Theorem 1.2 of [1] implies that the threefolds given explicitly in (iii)
have closed orbits in PCss; since the orbits miss L, they are also closed

in P̂Css. It follows that these orbits are the only orbits in P̂Css − E

that are strictly semistable and closed in P̂Css. This justifies (iii).

Now suppose T ∈ L. If T is not a chordal cubic then it is unstable

by Theorem 1.4(i) of [1], so every point of P̂C lying over T is unstable
by Theorem 2.1 of [33]. It remains only to discuss stability of pairs
(T, τ) with T a chordal cubic. Our key tool is Theorem 2.4 of [33]. This
says that (T, τ) is unstable if and only if it lies in the proper transform
of the set of cubic threefolds that are GIT-equivalent to chordal cubics.
So our job is to determine this proper transform. If τ has a point
of multiplicity > 6, then by Lemma 2.3(ii) it is a limit of threefolds
having An>5 singularities. Since T lies in PCss and PCss is open in
PC, (T, τ) is a limit of semistable threefolds having An>5 singularities.
By Theorem 1.3 of [1], such threefolds are GIT-equivalent to chordal
cubics. Then Reichstein’s Theorem 2.4 shows that (T, τ) is unstable.

Reichstein’s theorem also asserts that (T, τ) ∈ P̂Css is non-stable if and
only if it lies in the proper transform of PCss − PCs. If τ has a point
of multiplicity 6, then Lemma 2.3(ii) shows that (T, τ) is a limit of
semistable threefolds having A5 singularities, so it is not stable. This
justifies the ‘if’ parts of (iv) and (v).

Now, suppose τ has no point of multiplicity > 6. Since PCss is open,
T has a neighborhood U ⊆ PC with every member of U − L having
only An and D4 singularities. (In fact, D4 singularities can be excluded,
but this doesn’t matter here.) By Lemma 1.5, every member of U −L
admits in PC a simultaneous versal deformation of all its singularities.
If some member of U − L had an An≥6 singularity, then at some point
of U − L, ∆ would be locally modeled on the An discriminant (times
a ball of the appropriate dimension). On the other hand, it follows
from Theorem 2.2 that after shrinking U we may suppose that at every
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point of U − L, ∆ is locally modeled on

(3.2)

m⋃

i=1

K1 × · · · × Ki−1 × ∆i × Ki+1 × · · · × Km × BN ,

where the notation is as in Lemma 1.5. In particular, the ∆i ⊆ Ki are
copies of the Ak discriminants for various k’s that are at most 5. Since
(3.2) is not a copy of an An≥6 discriminant, U contains no points with
an An≥6 singularity, hence no points GIT-equivalent to chordal cubics.
By Theorem 2.4 of [1], (T, τ) is not unstable, which is to say that it is
semistable. This proves the ‘only if’ part of (v). The same argument,

using the fact that members of P̂Css − E have A5 or D4 singularities,
proves the ‘only if’ part of (iv).

Finally, if τ has a point of multiplicity 6, then (T, τ)’s orbit closure

in ET ∩ P̂Css contains (T, τ ′), where τ ′ has two points of multiplic-
ity 6. This is a classical fact about point-sets in P 1, and follows from
Richardson’s relative Hilbert-Mumford criterion [6, Thm. 4.2]. (The
point is that once 6 points collide, one can use a 1-parameter group
to drive the other 6 points together.) This proves (vi). To prove the
last claim of the theorem, just observe that the restrictions of the FA,B

in (iii) to the singular locus of the standard chordal cubic (defined by
F1,−2) consists of [1, 0, 0, 0, 0] and [0, 0, 0, 0, 1], each with multiplicity 6.
Let A → 1 and B → −2. �

Now that we know how much to enlarge the domain of g, we will
construct the extension. This relies on an analysis of the local mon-

odromy group at a point of P̂C, by which we mean the following. In
chapter 1 we considered the local system Λ(V0) over C0 and its associ-
ated local system CH(V0) of complex hyperbolic spaces. Now, Λ(V0)
does not descend to a local system on PC0, but CH(V0) does, because
the scalars {I, ωI, ω̄I} ⊆ GL(5, C) act on each Λ(V ) by scalar multi-
plication. After fixing a basepoint F ∈ C0, we defined

ρ : π1(C0, F ) → Γ(V ) := Aut Λ(V )

to be the monodromy of Λ(V0). Analogously, we define, for T ∈ PC0,

(3.3) Pρ : π1(PC0, T ) → PΓ(V ) ⊆ Isom
(
CH(V )

)
.

Henceforth, all references to monodromy refer to Pρ unless other-
wise stated. In the arguments below, we will compute the monodromy
of various elements of π1(PC0). For convenience we will perform vari-
ous monodromy calculations with roots of Λ(V ), but these could all be
rephrased in terms of elements of PΓ(V ).
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Now suppose T0 or (T0, τ0) is an element of P̂C and U is a suitable
small neighborhood of it; for example, U could be as in Lemma 1.5 or

Theorem 2.1. By the local fundamental group we mean π1

(
U − (∆̂ ∪

E), T
)
, where T is a basepoint. By the local monodromy action we

mean the restriction of Pρ to the local fundamental group, and by the
local monodromy group we mean the image of this homomorphism in

PΓ(V ). We will see that P̂Cs is exactly the subset of P̂Css where the
local monodromy group is finite. In order to establish this, we will need
to know the monodromy around a meridian of E:

Lemma 3.3. Suppose γ is a meridian around E in P̂C, T is a point
of γ, and Pρ(γ) is the monodromy action of γ on CH(V ). Then there
is a direct sum decomposition

Λ(V ) = Λ1 ⊕ Λ10 ,

where Λ1 is the span of a norm 3 vector s, Pρ(γ) acts on CH(V ) as
a hexaflection in s, and Λ10 is isometric to the sum of the last three
summands in (1.8).

This lemma resembles Lemma 1.4; each shows that a certain mon-
odromy action is a complex reflection in a norm 3 vector of Λ(V ). But
there is an essential difference. We have already defined a root of Λ(V )
to be any norm 3 vector r; we refine the language by calling r a nodal
or chordal root according to whether 〈r|Λ(V )〉 = θE or 3E . It is easy
to see that every root is either nodal or chordal. Lemma 3.3 asserts
that the monodromy of a meridian around E is a hexaflection in a
chordal root. Lemma 1.4 asserts that the monodromy of a meridian
around ∆̂ is a triflection in a root, and a simple argument shows that
this root must be nodal. (Namely, by considering a threefold with an

A2 singularity, one finds two meridians of ∆̂, which by Lemma 1.6 act
by the ω-reflections in linearly independent roots r and r′, and satisfy
the braid relation. This relation forces

∣∣〈r|r′〉
∣∣ =

√
3, so 〈r|r′〉 is a

unit times θ.) The ‘nodal’ and ‘chordal’ language reflects the fact that
these monodromy transformations arise by considering a degeneration
to a nodal threefold or to a chordal cubic. We caution the reader that
while it is true that every nodal (resp. chordal) root of Λ(V ) comes
from a nodal (resp. chordal) degeneration, we do not need this and
have not yet proven it. In any case, in Lemma 6.2 we show that Γ is
transitive on nodal and chordal roots of Λ. (The proof of Lemma 6.2
is independent of the rest of the monograph, so it could be read at this
point.)
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Proof of Lemma 3.3: Let T0 be the standard chordal cubic, and
τ0 a 12-tuple in RT0

concentrated at one point. By Theorem 2.1, the
local fundamental group at (T0, τ0) is Z × B12, where γ is a generator
of Z and we write a1, . . . , a11 for standard generators for the braid
group. By Lemma 1.4, the ai act on CH(V ) as triflections, and the
1-dimensional eigenspaces of (lifts of the ai to) Λ(V ) are spanned by
vectors ri of norm 3. We take Λ10 to be the span of the ri. Following
the proof of Theorem 1.7 shows that Λ10 is a copy of the direct sum of
the last three summands of (1.8), that Λ10 is a summand of Λ(V ), and
that Λ⊥

10 is spanned by a vector of norm 3. We write s for such a vector
and Λ1 for its span. Since γ commutes with the ai, any lift of Pρ(γ)
to Λ(V ) multiplies each ri by a non-zero scalar. Since 〈ri|ri+1〉 6= 0, it
multiplies all the ri by the same scalar, so that it acts on Λ10 as that
scalar. Since it acts by a scalar on the 1-dimensional lattice Λ⊥

10, the
order of Pρ is the order of the quotient of these scalars as elements
of the unit group of E . Therefore Pρ acts on CH(V ) as a complex
reflection of order 2, 3 or 6, or acts trivially.

Now we show that Pρ(γ) has order 6. We may find a neighborhood

of E− ∆̂ in P̂C which is a disk bundle over E− ∆̂. (We do not need all
the fibers to “have the same radius”—they can shrink as one approaches

∆̂.) We choose a ball B around T0 in the chordal cubic locus, and
write N for the restriction of this disk bundle to π−1(B) ⊆ E. N is

a neighborhood of ET0
− ∆̂ in P̂C − ∆̂, and we may suppose without

loss of generality that γ and a1, . . . , a11 lie in N −E. Now, N −E is a
punctured-disk bundle over π−1(B), which in turn is a punctured P 12-
bundle over B. Since B is a ball, π−1(B) → B trivializes topologically,

so up to homotopy, N − E is a circle-bundle over ET0
− ∆̂. Now,

π1(ET0
−∆̂) is the 12-strand spherical braid group B12(S

2), so π1(N−E)
is a central extension of B12(S

2) by Z = 〈γ〉. Furthermore, the local
description of the discriminant shows that the generators a1, . . . , a11

map to the corresponding standard generators for B12(S
2). Now, w =

a1 · · ·a10a
2
11a10 · · ·a1 ∈ B12 represents the braid in which the leftmost

strand moves in a large circle around all the other strands. Since this is
trivial in B12(S

2), w is homotopic in N −E to a member of the central
Z, i.e., to a power of γ. One can write out the ri ∈ Λ(V ) explicitly, as in
[2, sec. 5], and then matrix multiplication shows that w acts on CH(V )
with order 6. Since Pρ(γ) has order dividing 6, and some power of it
has order 6, Pρ(γ) itself has order 6. �

Now we will extend the domain of g, in two steps. We will begin
with the map g : PF0 → CH10 obtained from (1.10), where PF0
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is the quotient of F0 by the action of C∗ ⊆ GL(5, C) given in (1.9).

We enlarge PF0 to a space PFs, which is the branched cover of P̂Cs

associated to the covering space PF0 → PC0. Formally, we define

p : PFs → P̂Cs to be the Fox completion of the composition PF0 →
PC0 → P̂Cs. That is, a point of PFs lying over a point T of P̂Cs is
a function α which assigns to each neighborhood W of T a connected
component α(W ) of p−1(W ∩PC0), in such a way that if W ′ ⊆ W then
α(W ′) ⊆ α(W ). PFs has a natural topology; for details see [15]. By
the naturality of the Fox completion, the actions of PΓ and PG extend
to PFs.

Since PFs → P̂Cs is branched over ∆̂∪E, it is clear that the local

structure of ∆̂ and E plays a key role in the nature of PFs; by studying
it we will show that PFs is a complex manifold. The analysis follows
(3.3)–(3.10) of [3], but is more complicated.

We first need to assemble some known results about certain com-
plex reflection groups. Coxeter [12] noticed that for n = 1, . . . , 4, if
one adjoins to the (n + 1)-strand braid group the relations that the
n standard generators have order 3, then one obtains a finite complex
reflection group. We call this group Rn. One can describe the group
concretely by choosing vectors r1, . . . , rn that span an n-dimensional
Euclidean complex vector space Vn, such that the ith generator acts
as ω-reflection in ri. One may scale the roots in any convenient man-
ner; we take r2

i = 3 and refer to them as roots. Then the braid and
commutation relations imply that

∣∣〈ri|ri±1〉
∣∣ =

√
3 and all other inner

products vanish. By multiplying r2, . . . , rn in turn by scalars, we can
take 〈ri|ri+1〉 = θ for all i. The group generated by the reflections
in r1, . . . , rn is what we call Rn. In each case, r1, . . . , rn generate an
E-lattice, and it turns out that the reflections in Rn are exactly the
triflections in the norm 3 vectors of this lattice. We write Hn for the
union of the orthogonal complements of all these vectors.

Theorem 3.4. For any n = 1, . . . , 4, the pair
(
Vn/Rn,Hn/Rn

)
is

biholomorphic to (Cn, ∆An
), where ∆An

is the standard An discrimi-
nant. Rn acts freely on Vn−Hn, so Vn−Hn → Cn −∆An

is a covering
map. The subgroup of Bn+1 = π1(C

n −∆An
) corresponding to this cov-

ering space is the kernel of the homomorphism Bn+1 → Rn described
above. Finally, Vn → Cn is the Fox completion of the composition

Vn −Hn → Cn − ∆An
→ Cn .

Proof. That Vn/Rn
∼= Cn is the same as the ring of Rn-invariants

on Vn being a polynomial ring, which it is by work of Shephard and
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Todd [36]. That Hn/Rn corresponds to the An discriminant is part
of the main result of Orlik and Solomon [30, cor. 2.26]. It is known
that any finite complex reflection group acts freely on the complement
of the mirrors of its reflections. This is a theorem of Steinberg [37];
there is also a shorter proof by Lehrer [23]. The subgroup H of Bn+1

corresponding to the covering space contains the cubes of the meridians
of ∆An

, since Rn contains the triflections across the components of Hn.
Since modding out Bn+1 by the cubes of the standard generators yields
a copy of Rn, the cubes of meridians generate H , and Bn+1/H ∼= Rn

under the indicated homomorphism.

The claim about the Fox completion is a special case of the fol-
lowing: suppose G is a finite group acting linearly and faithfully on
a finite-dimensional real vector space V , and contains no (real) reflec-
tions. Then, writing V0 for the open subset of V on which G acts
freely, V → V/G is the Fox completion of V0 → V0/G → V/G. (One
just verifies that V → V/G satisfies the definition of a completion of
V0 → V/G. The absence of real reflections in G is required for V0 to
be locally connected in V , in Fox’s terminology.) �

Now we can describe the Fox completion PFs. First we describe it
away from the chordal locus, and then at a point in the chordal locus.

Theorem 3.5. Suppose T ∈ P̂Cs − E has ni singularities of type
Ai, for each i = 1, . . . , 4. Suppose T̆ ∈ PFs lies over T . Then near T̆ ,
PFs has a complex manifold structure, indeed a unique one for which
PFs → PCs is holomorphic. With respect to this structure, T̆ has a
neighborhood in PFs biholomorphic to

(B1)n1 × (B2)n2 × (B3)n3 × (B4)n4 × BN ,

where N = 34 − n1 − 2n2 − 3n3 − 4n4, such that PF0 corresponds to

(B1 −H1)
n1 × (B2 −H2)

n2 × (B3 −H3)
n3 × (B4 −H4)

n4 × BN .

The stabilizer of T̆ in PΓ is isomorphic to Rn1

1 ×· · ·×Rn4

4 , acting in the

obvious way, and the map to P̂Cs is the quotient by this group action.

Proof. By Lemma 1.5, T has a neighborhood U ⊆ PC biholomor-
phic to

(3.4) (B1/R1)
n1 × · · · × (B4/R4)

n4 × BN ,

such that U ∩ PC0 corresponds to (by Theorem 3.4)

(3.5)
(
(B1 −H1)/R1

)n1 × · · · ×
(
(B4 −H4)/R4

)n4 × BN ,
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and the local fundamental group is Bn1

2 × · · · × Bn4

5 . We write T ′ for

a basepoint in U − ∆̂, so that we can refer to its associated fourfold
V ′. By Lemma 1.4, any standard generator of any of the braid group
factors acts on CH(V ′) as the ω-reflection in a root r ∈ Λ(V ′). We
write H ⊆ Γ(V ′) for the group generated by all these reflections. The
local monodromy group is by definition the projectivization of H .

By Lemma 1.6, distinct generators of the local fundamental group
give linearly independent roots. Therefore the discussion before Theo-
rem 3.4 shows that H is Rn1

1 ×· · ·×Rn4

4 . Since the E-sublattice spanned
by the roots is positive-definite, it has lower dimension than Λ(V ′), so

H contains no scalars. Therefore Pρ
(
π1(U − ∆̂)

)
is a copy of H . By

Theorem 3.4, the covering space of U − ∆̂ associated to the kernel of
this monodromy is

(B1 −H1)
n1 × · · · × (B4 −H4)

n4 × BN ,

with the deck group being H , acting in the obvious way. Furthermore,
the Fox completion over U is then

(B1)n1 × · · · × (B4)n4 × BN ,

with T̆ being the point at the center.

Since (3.4) is not just a homeomorphism but a biholomorphism,
(B1)n1 × · · ·× (B4)n4 ×BN → U is complex analytic when the domain
is equipped with the standard complex manifold structure. This gives
the Fox completion a complex manifold structure such that PFs → PCs

is holomorphic. A standard argument using Riemann extension shows
that this structure is unique. �

Theorem 3.6. Suppose (T, τ) ∈ E ∩ P̂Cs, where τ has ni points of
multiplicity i+1, for each i = 1, . . . , 4. Suppose (T, τ )̆ ∈ PFs lies over
(T, τ). Then near (T, τ )̆ , PFs has a complex manifold structure, in-

deed a unique one for which PFs → P̂Cs is holomorphic. With respect
to this structure, (T, τ )̆ has a neighborhood biholomorphic to

B1 × (B1)n1 × · · · × (B4)n4 × BN−1 ,

where N is as in Theorem 3.5, such that the preimage of E corresponds
to

(3.6) {0} × (B1)n1 × · · · × (B4)n4 × BN−1

and the preimage of PC0 corresponds to
(
B1 − {0}

)
×

(
B1 −H1

)n1 × · · · ×
(
B4 −H4

)n4 × BN−1 .
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The stabilizer of (T, τ )̆ in PΓ is isomorphic to Z/6×Rn1

1 × · · ·×Rn4

4 ,
with the Ri’s acting in the obvious way. The Z/6 acts freely away from
(3.6).

Proof. This is much the same as the previous proof. The differ-
ence is that we don’t have a local analytic description of ∆̂ near E,
only weaker results, Theorems 2.1 and 2.2. We begin with the local
monodromy analysis. Theorem 2.1 provides a neighborhood U of (T, τ)
with

π1

(
U − (E ∪ ∆̂)

) ∼= Z × (B2)
n1 × · · · × (B5)

n4 ,

where a generator for the Z factor is a meridian γ of E, and the standard

generators for the braid group factors are meridians of ∆̂. As in the
previous proof, we write T ′ for a basepoint in U − (E ∪ ∆̂), so we can
refer to the associated fourfold V ′. We write H for the subgroup of
Γ(V ′) generated by the reflections in the roots associated to the braid
group factors. By Lemma 3.3, Pρ(γ) is a hexaflection of CH(V ′), which
is the projectivization of a hexaflection S of Λ(V ′) in a chordal root s of
Λ(V ′). We write H ′ for 〈H, S〉. The local monodromy group Pρ

(
π1

(
U−

(E ∪ ∆̂)
))

is the projectivization of H ′. Following the previous proof
shows that H ∼= Rn1

1 ×· · ·×Rn4

4 . We claim that s is orthogonal to all the
roots of the braid group factors. To prove this, we use the fact that S
commutes with H , so that for every nodal root r of a braid group factor,
the triflection R in r carries s to a multiple of itself. Therefore, either s
is orthogonal to all the r’s, or else it is proportional to one of them. The
latter is impossible because then s would be both nodal and chordal,
which is impossible. Since s is orthogonal to the r’s, H ′ = Z/6 × H .
Arguing as in the previous proof, H ′ contains no scalars, so it maps
isomorphically to its projectivization. Continuing as before proves the
corollary, with “biholomorphic” replaced by “homeomorphic”.

To prove the existence of the complex manifold structure, we pro-
ceed in two steps. First, we take Ũ to be the 6-fold cover of U , branched
over U ∩ E. This clearly has a complex manifold structure such that
the projection Ũ → U is holomorphic. Writing (T, τ)∼ for the preimage

of (T, τ), Theorem 2.2 provides us with a neighborhood Ṽ of (T, τ)∼

with the properties stated there. The important property is that Ṽ is
biholomorphic to B1 × (B1/R1)

n1 ×· · ·× (B4/R4)
n4 ×BN−1, such that

Ṽ − ∆̃ corresponds to

B1 ×
(
(B1 −H1)/R1

)
× · · · ×

(
(B4 −H4)/R4

)
× BN−1 .
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Taking the branched cover of Ṽ with deck group H gives the claimed
complex manifold model of PFs near (T, τ )̆ . The uniqueness of the
complex manifold structure again follows from Riemann extension. �

Extending the period map to PFs is now easy. If r is a root of
Λ, then we will call r⊥ ⊆ CH10 a discriminant hyperplane or chordal
hyperplane according to whether r is a nodal or chordal root. By the
chordal (resp. discriminant) locus of PFs, we mean the preimage of

E ⊆ P̂Cs (resp. ∆̂).

Theorem 3.7. The period map PF0 → CH10 extends to a holo-
morphic map g : PFs → CH10, which is invariant under PG and
equivariant under PΓ. The chordal (resp. discriminant) locus of PFs

maps into the chordal (resp. discriminant) hyperplanes of CH10.

Proof. PFs is a complex manifold by Theorems 3.5 and 3.6; since
g is a map to a bounded domain, the extension exists by Riemann
extension. The preimages of ∆̂ and E map into hyperplanes as claimed
because of PΓ-equivariance. Namely, a generic point of PFs lying over

∆̂ has stabilizer Z/3 in PΓ, so it maps to the fixed-point set of Z/3
in CH10, which is a discriminant hyperplane. The same idea applies

when ∆̂ is replaced by E. �

Since the period map of Theorem 3.7 is PΓ-equivariant, it induces
a map

P̂Cs = PΓ\PFs → PΓ\CH10 ,

which we will now extend further. As before, we continue to use the
notation g. The argument relies on a monodromy analysis near a three-
fold with an A5 or D4 singularity; we give the key point as a lemma:

Lemma 3.8. Suppose F ∈ Css defines a threefold T with a singular-
ity of type A5, and let U be a neighborhood of F as in Lemma 1.5, with
basepoint F ′. Let a1, . . . , a5 be standard generators for the correspond-
ing factor B6 of π1(U − ∆, F ′), and let r1, . . . , r5 be roots of Λ(V ′), by
whose ω-reflections the ai act. Suppose 〈ri|ri±1〉 = ±θ and all other
inner products are zero. Then ξ = r1−θr2−2r3 +θr4 +r5 is a nonzero
isotropic vector of Λ(V ′), and (a1 . . . a5)

6 acts on Λ(V ′) by the unitary
transvection in ξ, namely

x 7→ x − 〈x|ξ〉
θ

ξ .

Now suppose the singularity has type D4 rather than A5, and that a1,
a2, a3 and b are standard generators for A(D4) ⊆ π1(U − ∆), with b
corresponding to the central node of the D4 diagram. Suppose r1, r2, r3
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and r′ are roots for the corresponding ω-reflections of Λ(V ′), scaled so
that 〈ri|r′〉 = θ for i = 1, 2, 3. Then ξ = r1 + r2 + r3 − θr′ is a nonzero
isotropic vector of Λ(V ′), and (a1a2a3b)

3 acts on Λ(V ′) by the unitary
transvection in ξ.

Remark. The given words in the Artin generators generate the
centers of the Artin groups, and in each case, ξ spans the kernel of the
restriction of 〈 |〉 to the span of the roots. So it isn’t surprising that
the word acts by a transvection in a multiple of ξ. The point of the
lemma is that this multiple is nonzero.

Proof. We treat the A5 case first. We remark that the ri are pair-
wise linearly independent by Lemma 1.6, and by scaling them we may
assume that their inner products are as stated. We need the sharper
result that r1, . . . , r5 are linearly independent. Direct calculation using
the given inner products shows that ξ is isotropic and orthogonal to
r1, . . . , r5. One can show (Lemma 3.9 below) that the locus of cubic
threefolds with an A5 singularity is irreducible, so to prove ξ 6= 0, it
suffices to treat a single example. If T ′ has an A6 singularity, then one
can write down the inner product matrix for its six roots and check that
it is nondegenerate. Therefore its six roots are linearly independent.
In particular, the first five are, so ξ 6= 0. The fact that (a1 · · ·a5)

6 acts
as the transvection in ξ is a matrix calculation—one writes down any
linearly independent set of roots in C10,1 with these inner products,
and just multiplies the reflections together suitably.

The same idea works for the D4 case. To show ξ 6= 0, one must
check (i) the irreducibility of the set of threefolds with a D4 singularity,
(ii) that there is a threefold with a D5 singularity admitting a versal
deformation in PC, and (iii) the inner product matrix for 5 roots corre-
sponding to the generators of A(D5) is nondegenerate. Then one does
a matrix calculation to check the action of (a1a2a3b)

3. �

We used the following result in the proof of the lemma.

Lemma 3.9. The locus of cubic threefolds having an A5 singularity
is irreducible.

Proof sketch: The proof of Theorem 4.2 in [1] shows that, given
a cubic threefold T with an A5 singularity, one can choose homogeneous
coordinates so that many coefficients of F vanish. A more precise way
to say this is that T is projectively equivalent to a member of a certain
P 19 ⊆ P 34 = PC, and furthermore that a generic member of this P 19

has exactly one A5 singularity. Since PGL5C and this open subset of
P 19 are irreducible, so is the A5 locus. �
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Remark. A similar argument applies to the A2 locus, whose ir-
reducibility we used in the proof of Lemma 1.6. In that case there is
a more conceptual argument, which with effort can also be made to
work for the A5 case. The Jacobian scheme J of an A2 singularity is an
“infinitesimal curve”, i.e., a 0-dimensional irreducible scheme with 1-
dimensional tangent space. The length of J is 2. One way to phrase the
recognition principle for simple singularities [9, Lemma 1 and Corol-
lary] is that the generic hypersurface whose Jacobian scheme contains
J has an A2 singularity there, rather than some more-complicated sin-
gularity. Now, the family of copies of J in P 4 is irreducible, since
PGL5C acts transitively, and the irreducibility of the A2 locus follows
easily. The same ideas apply in the A5 case, but then J has length 5
and PGL5C is no longer transitive. It turns out that if J lies in a hy-
perplane then the cubic threefolds whose Jacobian scheme contains J
have singularities worse than A5. And only one PGL5C-orbit of copies
of J fails to lie in a hyperplane (namely, J lies in a rational normal
quartic curve). So the argument still applies.

Theorem 3.10. The period map P̂Cs → PΓ\CH10 extends to a

holomorphic map g : P̂Css → PΓ\CH10. This map sends P̂Css − P̂Cs

to the boundary points of the Baily-Borel compactification.

Proof. The extension of g to P̂Css − E follows section 8 of [3],
but is a little more complicated. After explaining this, we will extend

g to P̂Css ∩ E by modifying the argument, in the same way that we
modified the proof of Theorem 3.5 to prove Theorem 3.6.

We begin by supposing T ∈ P̂Css−(P̂Cs∪E), with defining function
F . We adopt the notation of Lemma 1.5, so that T has m singularities
s1, . . . , sm, and U is a neighborhood of F in Css with the properties
stated there. Let Ŭ be the cover of U universal among those with
two-fold branching over U ∩∆. By Brieskorn’s description [7] of versal

deformations of simple singularities, Ŭ is biholomorphic to a neighbor-
hood of the origin in C34, such that the preimage ∆̆ of ∆ is the union
of the reflection hyperplanes for the Coxeter group W1 × · · · × Wm,
where Wi is the Coxeter group of the same type as the singularity si.
Let β be a loop lying in a generic line through the origin in C35, and
encircling the origin once positively.

We claim that the sixth power of ρ(β) is nontrivial and unipotent.
(Discussing ρ(β) requires choosing a basepoint T ′ ∈ U − ∆, a framing

of this threefold T ′, and then a basepoint in Ŭ − ∆̆ lying over this
framed threefold. These choices are immaterial.)
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If T has only one singularity, of type An, then in terms of the stan-
dard generators a1, . . . , an for π1(U − ∆) ∼= Bn+1, β = (a1 . . . an)n+1.
The ai act by ω-reflections in linearly independent roots r1, . . . , rn of
Λ(V ), with ri ⊥ rj except for 〈ri|ri±1〉 = ±θ. This lets one work out
the action of β, by choosing such roots and multiplying matrices to-
gether. (Two choices of such roots are equivalent under U(9, 1), so the
conjugacy class of ρ(β6) in U(9, 1) is independent of the choice.) Direct
calculation shows that in the cases n = 1, 2, 3 and 4, the order of ρ(β)
has order 3, 2, 3 and 6. If n = 5 then ρ(β6) is a nontrivial unipotent
by Lemma 3.8, hence of infinite order. (No calculation is required to
see that ρ(β) has finite order if n < 5, because ρ(Bn+1) is the finite
group Rn.) If T has only one singularity, of type D4, with standard
generators a1, a2, a3 and b, b corresponding to the central node, then
β = (a1a2a3b)

6, and again Lemma 3.8 shows that ρ(β) is a nontrivial
unipotent.

If T has m singularities, then β = β1 . . . βm, where each βi is as
β above, one for each singularity. Since the βi’s commute, ρ(β6) is a
product of nontrivial commuting unipotent isometries, one for each A5

or D4 singularity. Since T is not stable, there is at least one A5 or D4

singularity. If there is only one, then this proves that ρ(β6) is nontrivial
and unipotent.

If there are more than one, then the product is unipotent since it
is a product of commuting unipotents. A little extra work is required
to show that it is nontrivial, i.e., that no cancellation occurs. Suppose
s and s′ are two singularities of T , each of type A5 or D4. (T cannot
have both an A5 and a D4 singularity, but this isn’t needed here.) Let
ξ and ξ′ be the isotropic vectors from Lemma 3.8. They are orthogonal
because they correspond to distinct singularities. Since Λ(V ′) has sig-
nature (9, 1), ξ and ξ′ are proportional. By using the formula defining
a unitary transvection, one can check that the product of the transvec-
tions in ξ and ξ′ is a transvection in a nonzero multiple of ξ. The same
argument applies when there are more than two singularities of type
A5 or D4. There is only one PG-orbit of such threefolds, which has
three D4 singularities.

Because a power of ρ(β) is nontrivial and unipotent, it fixes a unique
point of ∂CH10. By unipotence, this fixed point is represented by a null
vector of Λ, so there is an associated boundary point η of PΓ\CH10.
We claim that for every neighborhood Z of η, there is a neighborhood
Y̆ of the origin in Ŭ , such that the composition

Ŭ − ∆̆ → U − ∆ → PΓ\CH10 → PΓ\CH10
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carries Y̆ − ∆̆ into Z. This uses a hyperbolic analysis argument (see
p. 708 of [3]). It follows that for every neighborhood Z of η, there
is a neighborhood Y of F in C, such that g(Y − ∆) ⊆ Z. Then, by

Riemann extension, g : Y − ∆ → PΓ\CH10 extends holomorphically
to Y , carrying F to η.

Now suppose (T, τ) ∈ P̂Css∩E, with τ having a point of multiplicity

six, and let Ũ and Ṽ be as in Theorem 2.2. Then let V̆ be the universal
cover of Ṽ with 2-fold branching over ∆̃ ⊆ Ṽ . We write ∆̆ and Ĕ for
the preimages of ∆ and E in V̆ . From here, the treatment is exactly the
same as above, except that Ĕ is present. This affects nothing, because
the monodromy around Ĕ is trivial. (The monodromy around E has

order 6, and Ũ is the 6-fold cover of U branched over U ∩ E.) �

Theorem 3.11. PΓ\CH10 has exactly two boundary points. The
threefolds having a D4 singularity map to one, and those having an A5

singularity map to the other. The points (T, τ) of E, where τ has a
point of multiplicity 6, map to the latter boundary point.

We will call the boundary points the A5 and D4 cusps of PΓ\CH10.

Proof. We know that the preimage in P̂Css of the boundary con-

sists of P̂Css − P̂Cs. The GIT equivalence classes in P̂Css − P̂Cs are
represented by the points (iii) and (vi) of Theorem 3.2. The threefolds
TA,B form a 1-parameter family, limiting to (vi). Therefore they all map
to a single boundary point. We call the union of these GIT equivalence

classes the A5 component of P̂Css − P̂Cs. Only one GIT equivalence

class remains, which we call the D4 component of P̂Css − P̂Cs. There-
fore there are at most two boundary points.

It remains to show that the A5 and D4 threefolds map to dis-
tinct boundary points. We will use the fact that the D4 point of

P̂Css//SL(5, C) is an isolated point of the strictly semistable locus

(by Theorem 3.2). Theorem 3.10 implies that P̂Cs/G → PΓ\CH10

is proper, so any G-invariant neighborhood of the D4 locus, minus
the D4 locus itself, surjects to a deleted neighborhood of the D4 cusp
in PΓ\CH10. Now, the images of the A5 and D4 components in

P̂Css//SL(5, C) are disjoint closed sets, so the A5 and D4 components

have disjoint PG-invariant neighborhoods in P̂Css. Using this together
with the injectivity of the period map PC0/G → PΓ\CH10 (Theo-
rem 1.9) shows that no A5 threefold can map to the D4 cusp. So the
two cusps are distinct. �



CHAPTER 4

Degeneration to a Chordal Cubic

The aim of this chapter is to identify the limit Hodge structure
for the degeneration of cyclic cubic fourfolds associated to a generic
degeneration to cubic threefolds to a chordal cubic. The following
theorem is this chapter’s contribution to the proof of the main theorem
of the monograph, Theorem 6.1.

Theorem 4.1. The period map g : P̂Css → PΓ\CH10 carries the
chordal locus onto a divisor.

This immediately implies that the chordal cubics are points of in-
determinacy for the rational map Css 99K PΓ\CH10 obtained from the
period map Cs → PΓ\CH10.

The theorem is a consequence of Theorem 4.1.1 below, which most
of the chapter is devoted to proving. This theorem describes the limit
Hodge structure in terms of a Hodge structure studied by Deligne and
Mostow [28],[13], associated to a 12-tuple of points in P 1.

4.1. Statement of Results

Let us establish notation and definitions. The chordal cubic T is
the secant variety of a rational normal curve R in P 4. R is the whole
singular locus of T . Consider a pencil {Tt} of cubic threefolds with
T0 = T . In homogeneous coordinates, the family near T0 is

{ (
[x0: . . . :x4], t

)
∈ P 4 × ∆

∣∣ F (x0, . . . , x4) + tG(x0, . . . , x4) = 0
}

,

where F defines T = T0, G is some other member of the pencil, and ∆
is the unit disk in C. We assume that the pencil is generic in the sense
that Tt is smooth for all sufficiently small nonzero t. By scaling G we
may suppose that Tt is smooth for all t ∈ ∆ − {0}. We also make the
genericity assumption that G = 0 cuts out on R a set B of 12 distinct
points, the “infinitesimal base locus”.

Taking the threefold covers of P 4 over the Tt gives a family V,
which is the restriction to ∆ ⊆ C of the family called V in the rest of

48
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the monograph. Explicitly,

V =
{(

[x0: . . . :x5], t
)
∈ P 5 × ∆

∣∣

F (x0, . . . , x4) + tG(x0, . . . , x4) + x3
5 = 0

}
.

All fibers of V are smooth except for V0.

By Lemma 3.3, the monodromy of V|∆−{0} on H4 has finite order,
so there is a well-defined limit Hodge structure. To discuss this limiting
Hodge structure, we define the notion of an “Eisenstein Hodge struc-
ture.” This is an Eisenstein module H with a complex Hodge structure
on the vector space H ⊗E C, where multiplication by ω preserves the
Hodge decomposition. A morphism of such objects is a homomorphism
of Eisenstein modules which is compatible with the Hodge decomposi-
tion.

The Eisenstein Hodge structure of interest to us throughout the
monograph is Λ(V ), for V a smooth cyclic cubic 4-fold. Recall that
its underlying abelian group is H4

0 (V ; Z), and that the E-module struc-
ture is defined by taking ω to act as σ∗, where σ is from (1.1). Then
H4

0 (V ; R) is identified with Λ(V ) ⊗E C and is hence a complex vector
space. The projection to σ’s ω-eigenspace identifies it with H4

σ=ω(V ; C).
In light of this, the Hodge decomposition

(4.1.1) H4
σ=ω(V ; C) = H3,1

σ=ω(V ) ⊕ H2,2
σ=ω(V )

gives an Eisenstein Hodge structure on Λ(V ).

The limit mixed Hodge structure of a degeneration can be computed
from the mixed Hodge structure of the central fiber provided that the
degeneration is semistable. One computes the limit using the Clemens-
Schmid sequence [11]. A semistable model V̂ for a degeneration V is a
family over ∆ disk with the following properties:

(a) There is a surjective morphism V̂ → V which makes the diagram

V̂ −−−→ Vy
y

∆ −−−→ ∆
commute, where the bottom arrow is t = sn for some n, with s a param-
eter on the left ∆ and t a parameter on the right, and the restriction
of V̂ to ∆ − {0} is the pullback of V|∆−{0}. We write V and V̂ for the

central fibers of V and V̂, and Vt and V̂s for other fibers.

(b) The total space of V̂ is smooth and the central fiber s = 0
is a normal crossing divisor (NCD) with smooth components, each of
multiplicity one.
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It is known that every one-parameter degeneration has a semistable
model, obtainable by artful combination of three moves: base exten-
sion, blowing up, and normalization. In our case we will apply one base
extension, replacing t by s6, followed by three blowups along various
ideal sheaves.

In our case the Clemens-Schmid sequence reads as follows:,

· · · → H4(V̂, V̂∗) → H4(V̂ ) → lim
s→0

H4(V̂s)
N−→ H4(V̂s) → · · ·

where N is the logarithm of the monodromy transformation. The as-
terisk indicates the restriction of V̂ to the punctured disk. The terms
of the sequence are abelian groups equipped with Hodge structures,
but in our calculations we will only need to work with rational coeffi-
cients. Since the monodromy of V∗ on H4 of the fiber has order 6 (by
Lemma 3.3), the base extension ensures that the monodromy of the
semistable model is trivial. Therefore N = 0 and the sequence reduces
to

(4.1.2) · · · → H4(V̂, V̂∗) → H4(V̂ ) → lim
s→0

H4(V̂s) → 0.

Since the monodromy is trivial, the limit is a (pure) Hodge structure

and is presented as a quotient of the mixed Hodge structure on H4(V̂ ).

Because we are interested in the “Eisenstein part” of the sequence,
we make the following definition. Let H be a Z-module on which an
automorphism ζ of order n acts. Let pk be the cyclotomic polynomial
of degree k, where k is a divisor of n. Let H(k) be the kernel of pk(ζ)
acting on H . Then there is a decomposition of H⊗Q into a direct sum
of subspaces H(k) ⊗Q. Moreover, H is commensurable with the direct
sum of the H(k). Since the characteristic polynomial for the action
of ζ is pk on H(k), we call H(k) the kth characteristic submodule (or
subspace) of H , or alternatively, the k-part of H .

Passing to the 3-parts of the terms of (4.1.2), we have the sequence

(4.1.3) · · · → H4
(3)(V̂, V̂∗) → H4

(3)(V̂ ) → lim
s→0

H4
(3)(V̂s) → 0,

which need not be exact. However, it is exact when one takes Q as the
coefficient group.

The Eisenstein Hodge structure of V̂ is the focus of the rest of this
chapter; we describe it in Theorem 4.1.1 below. The description is in
terms of a curve C determined by the inclusion B ⊆ R. Identifying
R with P 1, B is the zero locus of a homogeneous polynomial f of
degree 12. The curve C is a certain 6-fold cover of P 1 branched over
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B, namely

(4.1.4) C =
{

[x:y:z] ∈ P (1, 1, 2)
∣∣ f(x, y) + z6 = 0

}
,

and it has an automorphism

(4.1.5) ζ
(
[x:y:z]

)
= [x:y: − ωz]

of order 6. The Griffiths residue calculus, Proposition 1.2, shows that
H1,0(C) is the vector space consisting of the residues of the rational
differentials

(4.1.6)
a(x, y, z)Ω

f(x, y) + z6

where Ω = xdydz − ydxdz + zdxdy and the total weight is zero, so
a is a polynomial of weight 8. Now, ζ scales z and Ω by −ω, and
it follows that H1,0

ζ=−ω̄(C) is 1-dimensional, spanned by (4.1.6) with

a = z4. One can also check that H0,1
ζ=−ω̄(C) is 9-dimensional. We

define an Eisenstein module structure Λ10(C) by taking the underlying
group to be H1

(6)(C; Z) and taking −ω̄ to act as ζ∗. By the same

considerations as above, Λ10(C) ⊗E C is identified with H1
ζ=−ω̄(C; C),

so the Hodge structure of C gives an Eisenstein Hodge structure on
Λ10(C). The notation Λ10(C) is intended to emphasize the parallel
between the isomorphism in Theorem 4.1.1 and the description of Λ(V )
in Theorem 1.7.

Theorem 4.1.1. There is an isogeny of Eisenstein Hodge structures

Λ(V̂ ) → E ⊕ Λ10(C)

of weight (−2,−1), where E indicates a 1-dimensional Eisenstein lattice
with Hodge type (1, 0).

Remark. The total weight of the map is −3. It is odd for a map of
Hodge structures to have odd total weight. Such odd weight morphisms
were first considered by van Geemen in his paper on half twists [16].

Proof of Theorem 4.1, given Theorem 4.1.1. By Theorem
4.1.1 we see that H4

(3)(V̂ ) has rank 22 as a Z-module, which is the

same as the rank of the limit Hodge structure. Therefore (4.1.3) shows

that the Eisenstein Hodge structures of Λ(V̂ ) and lims→0 Λ(Vs) are
isogenous. The period map for the family of Hodge structures Λ10(C)
has rank 9, by a standard calculation with the Griffiths residue calcu-
lus; see Proposition 1.2 and the calculation in the proof of Lemma 1.8.
Therefore, as the pencils in PC through T vary, their limiting Hodge
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structures sweep out a 9-dimensional family. It follows from Theo-
rem 3.10 that the period map is proper, so the image of the chordal
locus is closed, hence a divisor.

We remark that Mostow [28] (see also [13]) proved that the Eisen-
stein Hodge structure on H1

(6)(C) determines the point set B in P 1 up
to projective transformation. This is a global Torelli theorem, rather
than just the local one provided by the residue calculation referred to
above. �

4.2. Overview of the Calculations

This section outlines the calculations required for proving Theo-
rem 4.1.1. In order to discuss V̂ we need to describe briefly our par-
ticular semistable model V̂ . In the next section, we define V0 as the
degree 6 base extension of V, V1 as a blowup of V0, V2 as a blowup of
V1 and V3 as a blowup of V2. V̂ is V3. We write E1 ⊆ V1, E2 ⊆ V2

and E3 ⊆ V3 for the exceptional divisors of the blowups, and indicate
proper transforms of V and the Ei in subsequent blowups by adding
primes. For example, V ′ is the proper transform of V in V1, and the
central fiber of V3 is

V̂ = V ′′′ ∪ E ′′
1 ∪ E ′

2 ∪ E3.

Using the Mayer-Vietoris and Leray spectral sequences, we show in
Lemma 4.4.2 that only V ′′′ and E ′′

1 contribute to H4
(3)(V̂ ; Q), and these

contributions depend only on V and E1. That is,

(4.2.1) H4
(3)(V̂ ; Q) ∼= H4

(3)(V ; Q) ⊕ H4
(3)(E1; Q).

A key point in the argument is that H∗
(3)(A) = 0 when A is any inter-

section of two or more components. In Lemma 4.4.3 we show that the
first term on the right side of (4.2.1) is the Eisenstein Hodge structure
E = Z[ω], where all elements are of type (2, 2), and in Lemma 4.4.4 we
show that the second term is isomorphic to H1

(6)(C) as an Eisenstein
Hodge structure. Theorem 4.1.1 follows.

The argument is rather involved, for which reason we present a
roadmap in Figures 1 and 2. The configuration of components of the
central fibers V1(0), V2(0), and V3(0) of the successive blowups are
represented by a graph, with some indication of the the spaces attached
to vertices, edges, and faces.
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V ′ E1
P 2/RV1(0)

V ′′ E ′
1P 2/R

E2 = P (1, 1, 2)/S

P 1/S P 1/S
{pt}/S

V2(0)

V ′′′ ∼= V ′′ E ′′
1P 2/R

E ′
2

P 1/S P 1/Σ

{pt}/S

Σ ∼= S

E3 = P 2/Σ

P 1/Σ

P 1/Σ

V3(0)

Figure 1. Components of the central fibers and their
intersections. Each node represents a component. Edges
and faces represent intersections of components. The
notation X/Y means an X-bundle over Y . R is a copy
of P 1, and S ∼= Σ is a P 1-bundle over R. E1 is described
by (4.3.4) and surrounding text, and the other spaces are
described in paragraphs marked ‘Geometry of the central
fiber’.

4.3. Semistable reduction

We now construct a semistable model V̂ for V. Once constructed,
it will be called V3. As noted above, our approach is to apply one base
extension followed by three blowups, the first of which is centered in
R.

Let V0 denote the result of base extension of V, where t = s6 is the
parameter substitution. Thus

V0 =
{(

[x0: . . . :x4:z], s
)
∈ P 5 × ∆|F + s6G + z3 = 0

}
,

with s = 0 defining the central fiber V0(0). This central fiber is just
the fourfold V defined by F + z3 = 0, which is singular along R.
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E1 E10V1(0)

E1 E10

0

V2(0)

E1 E10

0 0

V3(0)

Figure 2. H∗
(3) of spaces in figure 1. It vanishes for the

spaces corresponding to edges and faces of the figure, by
Lemma 4.4.1. H4

(3) is shown for the vertex spaces. The
ones marked 0 vanish by Lemma 4.4.1. The others are
free Eisenstein modules of the indicated dimensions. The
three marked E1 (resp. E10) are all isomorphic via the
blowdown maps, by Lemma 4.4.3 (resp. 4.4.4).

The next step is to blow up V0 by blowing up P 5 × ∆ along an
ideal sheaf J supported in R. Let I denote the ideal sheaf of R in P 4.
Extend it, keeping the same name, to the ideal sheaf on P 5 × ∆ that
defines

(
the cone on R in P 5, with vertex [0:0:0:0:0:1]

)
× ∆ .

Let J be the ideal sheaf

(4.3.1) J = 〈I2, Izs, Is3, z3, z2s2, zs4, s6〉 .

Finally, let P̂ 5 × ∆ be the blowup of P 5 × ∆ along J , and let V1 be
the proper transform of V0. The central fiber V1(0) is the pullback of
s = 0, and consists of the proper transform V ′ of V and the exceptional
divisor E1 of V1 → V0.

The choice of ideal sheaf to blow up came from the local analytic
model (4.3.3) of V0 ⊆ P 5×∆. There, it is obvious that one “should” use
a weighted blowup along R with weights (3, 3, 3, 2, 1). For a well-defined
global construction, one needs to choose an ideal sheaf whose descrip-
tion in a coordinate patch gives this weighted blowup. We worked
backwards from (4.3.3) and arrived at J .

The family V1 is nearly semistable; one could call it an “orbifold
semistable model”. The precise meaning of this is that the inclusion of
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the central fiber into V1 is locally modeled on the inclusion of a normal
crossing divisor into a smooth manifold, modulo a finite group. We
will now proceed to resolve the quotient singularities.

Let S be the singular locus of V1. This turns out to lie in V ′ ∩ E1

and be a P 1 bundle over R. Let K be the ideal sheaf generated by (i)
the regular functions vanishing to order 2 along S, and (ii) the regular
functions vanishing to order 3 at a generic point of V ′. Let V2 be the
blowup of V1 along K. The central fiber V2(0) consists of the proper
transforms V ′′ and E ′

1 of V ′ and E1, together with the new exceptional
divisor E2. The choice of ideal sheaf K is explained after Lemma 4.3.4.

The family V2 is also an “orbifold semistable model.” It has quotient
singularities along a surface Σ which projects isomorphically to S, and
is smooth away from Σ. Define V3 to be the ordinary blowup of V2

along Σ. This is the desired semistable model V̂. Its central fiber V3(0)
is as always the pullback of s = 0, and consists of the proper transforms
V ′′′, E ′′

1 and E ′
2, and the exceptional divisor E3. Of course, σ acts on

V0 by z → ωz. Since it preserves J , it acts on V1, and similarly for V2

and V3.

Theorem 4.3.1. V3 → ∆ is a semistable model for the family V →
∆.

The rest of this section is devoted to proving this theorem and
describing the various varieties in enough detail for the cohomology
calculations in section 4.4. We will discuss weighted blowups and give
two lemmas, and then construct and study the three blowups. We
provide more computational detail than we would if our blowups were
just ordinary blowups.

We describe weighted blowups as follows. Let P (a) = P (a1, . . . , an)
be the weighted projective space with weights a = (a1, . . . , an). The
weighted blowup of Cn with weights a is the closure of the graph of the
rational map f : Cn

99K P (a), where f(z1, . . . , zn) = [z1: . . . :zn] is the
natural projection.

One can write down orbifold coordinate charts for the weighted
blowup as in [20, pp. 166–167]. However, note that the definition of
weighted blowup on p. 166 of that reference contains a misprint. The
map f used to define the graph should be the one we are using, not
f(z1, . . . , zn) = [za1

1 : . . . :zan
n ].

Weighted blowups are a special case of blowups of Cn at an ideal
supported at the origin. Suppose given weights (a1, . . . , an). Let d
be the least common multiple of the weights. Let h(z1, . . . , zn) be the
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vector of monomials of weight d in some order, considered as a rational
map from Cn to P N−1, where N is the number of monomials. Let Γh be
the closure of the graph of h. By the naturality of blowups, Γh is the
blowup of Cn along the ideal generated by the monomials of weight
d. Let v(z1, . . . , zn) be the same vector of monomials regarded as a
map from P (a) to P N−1. This “Veronese map” is well-defined, and it
embeds P (a) in P N−1. Finally, let f be the natural quotient (rational)
map from Cn to P (a), and let Γf be the closure of its graph. Then
v◦f = h. Since v is an embedding, it induces an isomorphism Γf

∼= Γg.
To summarize:

Lemma 4.3.2. Suppose given weights (a1, . . . , an). Let d be their
least common multiple, and let J be the ideal generated by the mono-
mials of weight d. Then the blowup of Cn at the origin with weights
(a1, . . . , an) is isomorphic to the blowup of Cn along J . �

Let X ⊂ Cn be an analytic hypersurface with equation fd(z) +
fd+1(z) + · · · , where fk has weight k and d > 1. Then the proper

transform X̂ of X under the weighted blowup is obtained as follows:
delete the origin and replace it by the hypersurface in P (a) defined by
fd(z) = 0. That is, replace the origin by the weighted projectivization

of the weighted tangent cone of X. We call X̂ the weighted blowup of
X at the point corresponding to the origin.

Next we give a local equation for the chordal cubic at a point of its
singular locus.

Lemma 4.3.3. Let T be the chordal cubic, R its rational normal
curve, and P a point of R. Then there are local analytic coordinates
x, u, v, w on a neighborhood of P in P 4, in which R is defined by u =
v = w = 0 and T by

(4.3.2) u2 + v2 + w2 = 0.

Proof. A hyperplane H transverse to R at P meets T in a cubic
surface with a node at P . Consequently there are analytic coordinates
u, v, w on H near P such that the equation for T ∩H is u2+v2+w2 = 0.
Now, there exists a 1-parameter subgroup X of Aut T = PGL(2, C)
that moves P along R, and we take x as a coordinate on X. The natural
map T × X → P 4 gives the claimed local analytic coordinates. �

Remark. If H is a hyperplane in P 4 with a point of contact of
order 4 with R, then there exist global algebraic coordinates on P 4−H
such that T − H is given by (4.3.2). The proof is an unenlightening
sequence of coordinate transformations.
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First blowup. One checks that V0 ⊆ P 5×∆ is smooth away from
R and transverse to {s = 0} away from R. To study V0 near a point
P of R, introduce local analytic coordinates x, u, v, w, z, s around P as
follows. Begin with affine coordinates x, u, v, w around P in P 4, as in
Lemma 4.3.2. Let z and s be the same z and s used above. Then a
neighborhood of P in V0 is

{
(x, u, v, w, z, s) ∈ (some open set in C6)

∣∣

u2 + v2 + w2 + s6G(x, u, v, w) + z3 = 0
}

.

If P ∈ B (recall that B is the infinitesimal base locus defined in the
first paragraph of section 4.1), then we may use the transversality of R
and {G = 0} to change coordinates by x → x + (a function of u, v, w),
so that {G = 0} is the same set as {x = 0}. That is, G is x times
a nonvanishing function. Absorb a sixth root of this nonvanishing
function into s. This yields a neighborhood of P of the form

{
(x, u, v, w, z, s) ∈ (some open set in C6)

∣∣

u2 + v2 + w2 + s6x + z3 = 0
}

,
(4.3.3)

where I = 〈u, v, w〉 and σ acts by z → ωz. If P /∈ B then the same
analysis leads to (4.3.3), but with the s6x term replaced by s6. We will
not discuss this case, because it is implicitly treated in the P ∈ B case
(by looking at points of R near points of B).

We defined the ideal sheaf J in (4.3.1), defined P̂ 5 × ∆ as the
blowup of P 5 × ∆ along J , and V1 as the proper transform of V0.
To understand its geometry, we write down generators for J in our

local coordinates and recognize P̂ 5 × ∆ as a weighted blowup along
R. Since I = 〈u, v, w〉, J is generated by the monomials of weight
six, where we give the variables u, v, w, z, s the weights 3, 3, 3, 2, 1. By
Lemma 4.3.2, V1 is the weighted blowup of V0 along the x-axis. By
the discussion following that lemma, above a neighborhood of P , the
exceptional divisor E1 is

{(
x, [u : v : w : z : s]

)
∈ (an open set in C) × P (3, 3, 3, 2, 1)

∣∣

u2 + v2 + w2 + z3 + xs6 = 0
}
.

(4.3.4)

That is, over R −B, E1 is a smooth fibration with fiber isomorphic to
the hypersurface in P (3, 3, 3, 2, 1) defined by

(4.3.5) u2 + v2 + w2 + z3 + s6 = 0 .

The special fibers lie above the points of B ⊂ R and are copies of the
weighted homogeneous hypersurface with equation u2+v2+w2+z3 = 0.
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The method we use for our detailed coordinate computations follows
[20, pp. 166–167]. The blowup is covered by open sets Bu, Bv, Bw, Bz

and Bs, each the quotient of an open set Au, . . . , As of C6 by a group

of order 3, 3, 3, 2 or 1. We will treat Au → Bu ⊆ P̂ 5 × ∆ in some
detail; the treatment of v and w is the same, and we will only briefly
comment on Bz and Bs. One may take coordinates x, u̇, v̇, ẇ, ż, ṡ on Au,
with Bu = Au/〈η〉, where η is the transformation u̇ → ωu̇, ż → ωż,
ṡ → ω̄ṡ. The map Au → P 5 × ∆ is given by u = u̇3, v = v̇u̇3,
w = ẇu̇3, z = żu̇2 and s = ṡu̇; these functions of u̇, . . . , ṡ are η-
invariant, so they define a map Bu → P 5 × ∆. The preimage in Au of

the exceptional divisor of P̂ 5 × ∆ → P 5 × ∆ is {u̇ = 0}. The pullback
to Au of the defining equation of V0 is u̇6(1 + v̇2 + ẇ2 + ṡ6x + ż3) = 0,
so the preimage in Au of the proper transform V1 is the hypersurface
H given by 1 + v̇2 + ẇ2 + ṡ6x + ż3 = 0. One checks that this is a
smooth hypersurface. Also, the pullback to Au of the central fiber
s = 0 is ṡu̇ = 0, and one checks that H meets {u̇ = 0}, {ṡ = 0} and
{u̇ = ṡ = 0} transversely. Therefore s = 0 defines a NCD in H with
smooth components of multiplicity one. The one complication is that
V1 ∩ Bu is H/〈η〉 rather than H itself. Since η has fixed points in H ,
V1 turns out to be singular. We will resolve these singularities after
discussing Bz and Bs.

The analysis of V1 ∩ Bs is easy, since Bs = As. One writes down
the equation for V1 ∩ As, and checks smoothness and transversality to
{s = 0}. In fact, As meets only one component of the central fiber,
E1. The analysis of V1∩Bz is only slightly more complicated. We have
Bz = Az/(Z/2). One writes down the equation for the preimage of V1

in Az, and checks its smoothness and that s = 0 defines a NCD with
smooth components. Then one observes that this hypersurface misses
the fixed points of Z/2 in Az, so that the same conclusions apply to
V1 ∩ Bz.

Now we return to V1 ∩Bu. It is convenient to make the coordinate
change v̇ → (v̇+ẇ)/2, ẇ → (v̇−ẇ)/2i on Au, so that v̇2+ẇ2 is replaced
by v̇ẇ. Then the fixed-point set of η in H ⊆ Au is {(x, 0, v̇, ẇ, 0, 0)|1+
v̇ẇ = 0}. Therefore every fixed point has v̇ 6= 0, and we can use
1 + v̇ẇ + ṡ6x + ż3 = 0 to solve for ẇ in terms of the other variables.
The result is that there is an open set W in C5, with coordinates
x, u̇, v̇, ż, ṡ, mapping isomorphically onto its image in H , with its image
containing all the fixed points of η in H . The induced action of η
on W is (x, u̇, v̇, ż, ṡ) → (x, ωu̇, v̇, ωż, ω̄ṡ). Therefore, a point on
the singular locus of V1 has a neighborhood in V1 locally modeled on
(W ⊆ C5)/ diag[1, ω, 1, ω, ω̄]. Therefore the singular locus of V1 is a
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smooth surface S. The preimage in W of the central fiber s = 0 is
ṡu̇ = 0. Note that this is η-invariant, hence well-defined on W/〈η〉.
The preimage in Au of the exceptional divisor E1 is u̇ = 0 and that of
V ′ is ṡ = 0. Note that neither u̇ nor ṡ is η-invariant, so these equations
don’t make sense on W/〈η〉. This reflects the fact that neither E1 nor
V ′ is a Cartier divisor, but their sum is. (It should not alarm the reader
that E1 is not Cartier, even though blowing up an ideal always gives
a Cartier divisor; it is 3E1 rather than E1 which is Cartier.) Finally, a
lift to W of σ : V1 → V1 is ż → ωż. This shows that σ acts trivially on
S.

Geometry of the central fiber. The central fiber of V1 is the variety

V1(0) = V ′ ∪ E1,

where the exceptional divisor has already been described as a fibration
over R. The components have multiplicity one. The first component is
a blowup of V along S. The exceptional divisor of V ′ → V is V ′ ∩ E1,
which in coordinates is given by (4.3.4) with the extra condition s = 0.
Therefore, V ′∩E1 is a fiber bundle over R with fiber isomorphic to the
hypersurface u2 + v2 + w2 + z3 = 0 in P (3, 3, 3, 2). One can check that
this hypersurface is a copy of P 2 (by projecting away from [0:0:0:1]).

Second blowup. Our aim is now to resolve the singularities of V1.
Henceforth, we will work with the local description of V1 in terms of
W/〈η〉, rather than regarding V1 as a hypersurface in a 6-dimensional
space. We will see below (Lemma 4.3.4) that blowing up the ideal sheaf
K to get V2 can be described in terms of W/〈η〉 as follows. Recall that

W has coordinates x, u̇, v̇, ż, ṡ with η = diag[1, ω, 1, ω, ω̄]. Define Ŵ
to be the weighted blowup of W along the x-v̇ plane, where u̇ and ż
have weight 1 and ṡ has weight 2. It is natural to use these weights,
because with respect to them, η is weighted-homogeneous, hence fixes
the exceptional divisor pointwise. Then the map

(
the preimage of W/〈η〉 ⊆ V1 in V2

)
→ W/〈η〉

turns out to be equivalent to Ŵ/〈η〉 → W/〈η〉. This is the content of

Lemma 4.3.4 below. As before, one covers Ŵ by open sets Bu̇, Bż and
Bṡ, which are quotients of open sets Au̇, Aż and Aṡ of C5 by cyclic
groups of orders 1, 1 and 2. By working in local coordinates, one can
check that η acts on Bu̇ = Au̇ by multiplying a single coordinate by ω.
Therefore Bu̇/〈η〉 ⊆ V2 is smooth. One also checks that s = 0 defines
a NCD with smooth components of multiplicity one. (The multiplicity
is three along the preimage of E2 in Bu̇, but in Bu̇/〈η〉 the multiplicity
is only one.) Exactly the same considerations apply to Bż/〈η〉 ⊆ V2.
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A similar analysis leads to the conclusion that Bṡ/〈η〉 is isomorphic
to an open set in C5, modulo Z/2, acting by negating three coordinates.
Therefore V2 is singular along a surface Σ which maps isomorphically
to S. (It follows that σ acts trivially on Σ.) Furthermore, at a singular
point, V2 is locally modeled on

C2 ×
(
the cone in C6 on the Veronese surface P 2 ⊆ P 5

)
.

One checks that away from Σ, the central fiber V2(0) in Bṡ/〈η〉 is a
NCD with smooth components of multiplicity one.

Geometry of the central fiber. The central fiber of V2 is the variety

V2(0) = V ′′ ∪ E ′
1 ∪ E2.

One can check the following:

(a) The new exceptional divisor E2 is a P (1, 1, 2)-bundle over S.
Note that P (1, 1, 2) is isomorphic to a cone in P 3 over a smooth plane
conic. The vertices of these cones comprise Σ.

(b) The map V ′′ → V ′ has exceptional divisor V ′′ ∩ E2, which is a
P 1-bundle over S. (Each fiber P 1 is a smooth section of the quadric
cone introduced in (a). In particular, V ′′ ∩ Σ = ∅.)

(c) The map E ′
1 → E1 has exceptional divisor E ′

1 ∩ E2, which is a
P 1-bundle over S. (Each fiber P 1 is a line through the vertex of the
cone in (a).)

(d) V ′′ ∩ E ′
1 projects isomorphically to V ′ ∩ E1. This is obvious

away from S, and is true over S because the fiber of V ′′ ∩ E ′
1 over a

point of S is the intersection of the P 1’s in (b) and (c), which is a point.

(e) The triple intersection V ′′ ∩ E ′
1 ∩ E2 is a point-bundle over S,

hence isomorphic to S. This follows from (b) and (c).

Third blowup. The family V2 is singular along the surface Σ,
where it is locally modeled on C2 ×

(
C3/{±I}

)
. A single ordinary

blowup along Σ, i.e., blowing up along the ideal sheaf of Σ, resolves
the singularity, and it is obvious that E3 is a P 2-bundle over Σ. One
checks that the central fiber is a NCD with smooth components of
multiplicity one. A convenient way to do the computations is to take
the ordinary blowup of C5 along C2, and then quotient by Z/2. (This
gives the same blowup.)

Geometry of the central fiber. The central fiber of V3 is the variety

V2(0) = V ′′′ ∪ E ′′
1 ∪ E ′

2 ∪ E3.

The components are of multiplicity one and smooth and transverse. We
have already observed that E3 is a P 2-bundle over Σ. Its intersections
with E ′′

1 and E ′
2 are P 1-bundles over Σ; in fact the P 1’s are lines in
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the P 2’s. The triple intersection E3 ∩ E ′
2 ∩ E ′′

1 projects isomorphically
to Σ. E3 does not meet V ′′′, so V ′′′ = V ′′ and the intersections of V ′′′

with E ′′
1 and E ′

2 are the same as V ′′’s intersections with E ′
1 and E2,

described earlier. Since E ′
1 ∩E2 is a P 1-bundle over S (part (b) of the

‘Geometry of the central fiber’ of the second blowup), blowing up S
makes E ′′

1 ∩ E ′
2 into a P 1-bundle over Σ.

All that remains for the proof of Theorem 4.3.1 is to explain why

blowing up the ideal sheaf K coincides with our description Ŵ/〈η〉 →
W/〈η〉 of the second blowup. We formalize this as a lemma:

Lemma 4.3.4. Suppose W is an open set in C5, with coordinates x,
u̇, v̇, ż and ṡ, and is invariant under η = diag[1, ω, 1, ω, ω̄]. Suppose
V ′ ⊆ W/〈η〉 is the image of {ṡ = 0} ⊆ W , and let K be the ideal
sheaf on W/〈η〉 generated by the regular functions vanishing to order 3
at a generic point of V ′ and the regular functions vanishing to order 2

along the singular locus S of W/〈η〉. Let Ŵ be the weighted blowup of
W along u̇ = ż = ṡ = 0, with u̇ and ż having weight 1 and ṡ having

weight 2. Then W → W/〈η〉 induces an isomorphism from Ŵ/〈η〉 to
the blowup of W/〈η〉 along K.

Proof. We begin by observing that the nine monomials x, v̇, u̇3,
u̇2ż, u̇ż2, ż3, u̇ṡ, żṡ and ṡ3 generate the invariant ring of η, so that
evaluating them embeds W/〈η〉 in C9. It is easy to see that K is the
ideal generated by (i) the quadratic monomials in u̇3, u̇2ż, . . . , ṡ3, and
(ii) the linear function ṡ3. (We remark that the function ṡ3 vanishes to
order 3 along V ′, at a generic point of V ′, and generates the ideal of such
functions. However, even though S lies in V ′, ṡ3 only vanishes to order
one at a point of S, because ṡ3 is one of the coordinate functions on
C9. This is related to the fact that V ′ is not a Cartier divisor, but 3V ′

is.) Therefore, blowing up K amounts to defining Ĉ9 as the weighted
blowup of C9 along the x-v̇ plane, with weights 1, . . . , 1, 2, and taking

the proper transform therein of W/〈η〉. One can cover Ŵ and Ĉ9 by

open sets, write down the rational map from Ŵ to Ĉ9 explicitly, and

check that it is regular and induces an embedding Ŵ/〈η〉 → Ĉ9. �

Remark. The proof conceals the origin of the choice of K. We
found it as follows. We knew we wanted to take the (1, 1, 2) weighted
blowup of W , which is to say, blow up the ideal 〈u̇2, u̇ż, ż2, ṡ〉. The
problem is that its generators are not η-invariant, so they do not define
functions on W/〈η〉. The solution was to blow up the cube of this
ideal rather than the ideal itself. We wrote down the generators of the
cube, and expressed them in terms of the generators for the invariant
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ring of η. Every generator of the ideal was a quadratic monomial in
the generating invariants, except for ṡ3, which was itself one of the
generating invariants. This suggested that our weighted blowup of C9

would give the desired blowup Ŵ/〈η〉 → W/〈η〉. Then we just checked
the construction.

4.4. Cohomology computations

In this section we describe the 3-part of the middle cohomology of
the central fiber V̂ of the semistable model V3, in a sequence of lemmas.

Lemma 4.4.1. Let M ′ and M be algebraic varieties on which an
automorphism σ of finite order acts. Let f : M ′ → M be a morphism
with connected fibers which is equivariant with respect to this action.
Suppose S ⊂ M is a subspace, let D = f−1(S), and assume that (a)
f : M ′−D → M−S is an isomorphism, (b) f : D → S is a fiber bundle,
and (c) σ acts trivially on S and trivially on the rational cohomology
of the fiber. Then the map of characteristic subspaces

H∗
(k)(M ; Q) → H∗

(k)(M
′; Q)

is an isomorphism for each k 6= 1.

Proof. Consider the Leray spectral sequence for the map f :
M ′ → M . Its abutment is the cohomology of M ′. Its E1 terms are of
the form Ep,q

1 = Hp(M, Rqf∗Q). The automorphism σ acts on M , M ′,
and the spectral sequence. Thus we can speak of the spectral sequence
for the k-part of the cohomology of M ′. Because f is an isomorphism
over M − S and has connected fibers over S, there are two kinds of
terms of the spectral sequence. For the first, the support of the coeffi-
cient sheaf is all of M . These are the terms Hp

(
M, (f∗Q)(k)

)
, which are

isomorphic to Hp
(k)(M, Q). For the other terms the support of the co-

efficient sheaf is S. These are the terms Hp
(
S, (Rqf∗Q)(k)

)
with q > 1.

However, since the action on the cohomology of the fibers is trivial,
these spaces are zero. Therefore the spectral sequence degenerates and
we have the isomorphism

H∗
(k)(M, Q) ∼= H∗

(k)(M, f∗Q) ∼= H∗
(k)(M

′, Q).

This completes the proof. �

Lemma 4.4.2. The 3-part of the middle cohomology of the central
fiber of V3, with Q coefficients, is

H4
(3)(V̂ ; Q) ∼= H4

(3)(V ; Q) ⊕ H4
(3)(E1; Q).
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Proof. First, if A is an intersection of two or more components
of V̂ , then H4

(3)(A; Q) = 0. One sees this by using Lemma 4.4.1 and
the explicit descriptions of the intersections, given in section 4.3. That
is, each of E3 ∩ E ′

2 and E3 ∩ E ′′
1 is a P 1-bundle over Σ, and σ acts

trivially on Σ. Also, E3∩E ′
2∩E ′′

1 projects isomorphically to Σ. Finally,
the nonempty intersections involving V ′′′ are V ′′′ ∩ E ′′

1 , V ′′′ ∩ E ′
2 and

V ′′′ ∩ E ′′
1 ∩ E ′

2, to which essentially the same argument applies. Then
the Mayer-Vietoris spectral sequence implies that with Q coefficients
we have

H4
(3)(V̂ ) = H4

(3)(V
′′′) ⊕ H4

(3)(E
′′
1 ) ⊕ H4

(3)(E
′
2) ⊕ H4

(3)(E3).

We continue to use Lemma 4.4.1. E3 is a P 2-bundle over Σ, so the last
term vanishes. Also, E ′

2 → E2 induces an isomorphism on H4
(3)( · ; Q),

and similarly for E ′′
1 → E ′

1 → E1 and V ′′′ = V ′′ → V ′ → V . Finally, E2

is a P (1, 1, 2)-bundle over S, and σ acts trivially on S, so H4
(3)(E2; Q) =

0 and the lemma follows. �

Lemma 4.4.3. There is an isomorphism

H4
(3)(V ) ∼= E ,

where E is the rank one free Eisenstein module of type (2, 2).

Proof. By Morse theory, P 5 is obtained from a neighborhood of
V by attaching cells of dimension five and larger. Thus the cohomology
of V is the same as that of P 5 in dimensions less than four. It is known
that V is a topological manifold (it follows from Lemma 4.3.2 that near
R, V is modeled on a sum of three squares and a cube; apply the first
example of §9 of [27]). Therefore Poincaré duality implies that H4(V )
is torsion-free and that V ’s cohomology in all dimensions except four
is that of P 4.

A chordal cubic T has three natural strata: (i) R itself, (ii) the
union of the tangent lines to R, minus their points of tangency, and
(iii) the union of the secant lines, minus the points in which they cut
R. These strata are a P 1, a C bundle over P 1, and a C∗-bundle over
P 1 × P 1. Adding the Euler characteristics of the strata, we find that
χ(T ) = 4. Therefore the Euler characteristic of V , a three-sheeted
cover of P 4 branched along T , is seven. It follows that H4(V ) is free of
rank three. Since any σ-invariant cohomology pulls back from P 4, we
conclude that H4

(3)(V ) has rank two. It is therefore a one-dimensional

Eisenstein module, necessarily of type (2, 2). �

Note. Suppose that ωt is a family of classes in H3,1(Vt)ω̄. Let δt

be a family of homology classes whose limit as t approaches zero is a
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generator of the Eisenstein factor in the above decomposition. Then

lim
t→0

∫

δt

ωt = 0,

since the E-component of the limit of ωt has type (2, 2). Thus the linear
equation ∫

δ

ω = 0

is a necessary condition for a period vector to represent a chordal cubic.
In other words, the limiting periods for degenerations to chordal cubics
near V lie in the hyperplanes δ⊥.

Our final lemma treats the “interesting” part of the Hodge structure
of the central fiber, describing it in terms of that of the curve C given
by the equation (4.1.4).

Lemma 4.4.4. There is an isogeny

H4
(3)(E1) → H1

(6)(C)

of Eisenstein Hodge structures, of weight (−2,−1).

Proof. It suffices to exhibit an isomorphism

(4.4.1) H4
(3)(E1, Q) ∼= H1

(6)(C; Q)

that carries each component Hp,q
(3)(E1) of the Hodge decomposition,

p + q = 4, to Hp−2,q−1
(6) (C). The proof uses the existence of maps

p : E1 → R and p′ : C → R via which we can compute the 3- and
6-parts of the cohomology using the Leray spectral sequence. The first
order of business is to exhibit isomorphisms (R3p∗Q)(3)

∼= (p′∗Q)(6), and
then to show that

H4
(3)(E1, Q) ∼= H1(R3p∗Q)(3)

∼= H1(R, (p′∗Q)(6)) ∼= H1
(6)(C; Q)

The smooth fibers F of the map p can be identified with the hy-
persurface u2 + v2 + w2 + z3 + s6 = 0 in P (3, 3, 3, 2, 1). By the Grif-
fiths residue calculus, Proposition 1.2, we see that h3,0(F ) = 0 and
h2,1(F ) = 1, where a generator of H2,1(F ) is given by the residue of
the form

(4.4.2) Φ =
Ω

(u2 + v2 + w2 + z3 + s6)2
.

The (2, 1) cohomology belongs to the 3-part since σΩ = ωΩ and the
denominator is invariant. By the Lefschetz hyperplane theorem, the
cohomology of F is like that of a weighted projective space in other
degrees, see the Corollary to Theorem 4.2.2 of [14]. It follows that for
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points x ∈ R−B, (a) (R3p∗Qx)(3) is a rank one Eisenstein module, (b)
(Rip∗Qx)(3) = 0 if i 6= 3.

Via the projection (u, v, w, z, s) 7→ (w, z, s), the fiber F can be pre-
sented as a conic bundle over P (3, 2, 1) with discriminant the Eisenstein
elliptic curve E , w2 + z3 + s6 = 0. This description gives an alternative
computation of the cohomology of F .

The points of the base locus B are critical points of p. Near a critical
point, the map is given by projection onto the x-axis from the variety
u2 + v2 + w2 + z3 + xs6 = 0. Group the terms of the equation as (u2 +
v2) + (w2 + z3 + xs6) = 0. The second term describes the degeneration
of an Eisenstein elliptic curve to a cusp. Its monodromy can be written
as (−1) ⊗ ω via the Sebastiani-Thom theorem [35]. The monodromy
of p is the double suspension of this, given by (−1)⊗ (−1)⊗ (−1)⊗ω,
as in the proof of Lemma 1.3. The transformation σ, which acts on
weighted projective space by [u : v : w : z : s] 7→ [u : v : w : ωz : s], acts
on cohomology by 1⊗1⊗1⊗ω. Thus the local monodromy at a critical
point corresponding to a positively oriented loop γ of winding number
one is ρ(γ) = −σ. It follows that the sheaf (R3p∗Q)(3) is supported
on R − B, and on that space it is a local system associated to the
representation ρ. This representation sends the “standard generators”
of π1(R − B) to −σ.

The potentially nonzero initial terms in the Leray spectral sequence
of (p∗Q)(3) are H i(R, (R3p∗Q)(3)) for i = 0, 1, 2. A nonzero class for the
case i = 0 would represent an invariant cycle for the local system
(R3p∗Q)(3). By the discussion above, there are no nonzero invariants
of the monodromy representation. Therefore H0(R, (R3p∗Q)(3)) = 0.

The sheaf cohomology group H2(R, (R3p∗Q)(3)) is the same as the
cohomology H2(R −B, (R3p∗Q)(3)) of the indicated local system. But
R − B has the homotopy type of a 1-complex, so this group vanishes.
Because the Leray spectral sequence for the 3-part has just a single
initial term, one has the isomorphism

(4.4.3) H4(E1, Q)(3)
∼= H1(R, (R3p∗Q)(3)).

The isomorphism

(4.4.4) H1(C, Q)(6)
∼= H1(R, (p′∗Q)(6))

is elementary: it expresses the fact that action of the sixth roots of
unity on C is local.

To show that the coefficient systems are isomorphic, consider the
monodromy representation of (p′∗Q)(6). It is the restriction to the 6-part
of the monodromy representation on p′∗Q. Let t be a local coordinate
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on R such that t = 0 is a point of B. Then the cover C −→ R is given
locally by (z, t) 7→ t on the analytic set z6 = t. The fiber over t is
the set { ζ it1/6 | i = 0, . . . , 5 }. where t1/6 is some fixed sixth root of
t. The fiber of p′∗Q is the rational vector space generated by this set.
The monodromy for a positively oriented loop γ of winding number one
is given given by multiplication by ζ = exp(2πi/6). The action of ζ
also gives the decomposition into characteristic sheaves. One can check
that (p′∗Q)(6) is the rational vector space generated by 1− ζ2 − ζ3 + ζ5

and ζ + ζ2 − ζ4 − ζ5, and that multiplication by ζ restricted to it is a
transformation of order six. There is a choice of Eisenstein structure
on (p′∗Q)(6): the one generated by ω and the one generated by ω2. We
choose the latter so that ρ(γ) = −σ. Thus the monodromy of the two
local systems in question can be expressed in the same way in terms
of the Eisenstein structure. Consequently there is an isomorphism of
local systems,

(Rp3
∗Q)(3)

∼= (p′∗Q)(6).

Combining the preceding with the isomorphisms (4.4.3) and (4.4.4), we
obtain the isomorphism (4.4.1).

We claim next that the isomorphism (4.4.1) underlies an isomor-
phism of complex Hodge structures. A Hodge structure is defined via
a theory of differential forms and a harmonic theory. These exist both
for cohomology with coefficients in the complex numbers C and with
coefficients in a local system, provided that the local system is unitary.
This is the case for the eigensystems of the local systems considered
above. Consider the local system R3p∗Z. There is a decomposition

(4.4.5) R3p∗Z ⊗ C = (R3p∗C)ω ⊕ (R3p∗C)ω̄

into eigenspaces of the deck transformation σ. Each of the local systems
on the right is unitary. Moreover, each has a Hodge type inherited from
the Hodge structure on the cohomology of the fiber. To determine the
relation between the types and the eigenvalues, recall that the form Φ
in equation (4.4.2) is of type (2, 1) and transforms as σΦ = ωΦ. Since
H3(F ) is two-dimensional, it follows that Therefore

(R3p∗C)ω = (R3p∗C)2,1
ω .

Therefore the complex Hodge structure

H4(E1, C)ω
∼= H1

(
R − B, (R3p∗C)ω

)
= H1

(
R − B, (R3p∗C)2,1

ω

)

has type (3, 1) + (2, 2). Similar considerations yield an isomorphism

H1
(6),ω(C) ∼= H1

(6),ω

(
R − B, (p′∗C)

)
,
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where the decomposition is relative to the action of ζ and the local
system can be considered as a local system of Hodge structures of type
(0, 0). Finally, the isomorphism

(R3p∗C)ω
∼= (p′∗C)(6),ω ⇔ (R3p∗C)2.1

(3)
∼= (p′∗C)0,0

(6),ω

of unitary systems of complex Hodge structures gives an isomorphisms
of complex Hodge structures

H4
ω(E1, C) ∼= H1

(6),ω(C).

of type (−2,−1). The proof is now complete.

�

Remark. (1) As motivation for the choice of Eisenstein structure
on C, we compute the action of σ on a nonzero element — in fact, a
generator — of the space H1,0(C)(6) Consider the expression

Ψ =
Ω(x, y)

z
.

It defines a holomorphic one-form on C. The sixth root of unity acts
by Ψ 7→ ζ−1Ψ, so that Ψ = Ψ(6). Moreover, σΨ = ωΨ. Thus a
holomorphic form in the 6-part of H1(C) has eigenvalue ω with respect
to σ.

(2) Another approach to the Hodge structure of E1 is the follow-
ing. One can show that E1 is birational to the hypersurface Z in
P (1, 1, 6, 6, 6, 4) given by the equation

f(x, y) + u2 + v2 + w2 + z3 = 0.

(This is plausible because the projection (x, y, u, v, w, z) 7→ (x, y) blows

up Z along {x = y = 0}, yielding Ẑ. And Ẑ fibers over P 1 with the
same generic fiber and same special fibers as in the fibration of E1 over
R.) Presumably, E1 99K Z induces an isogeny of Hodge structures.
Standard calculations with the Griffiths Jacobian calculus yields the
Hodge numbers (0, 1, 9, 0, 0) for H4(Z)ω, with the period map having
9-dimensional image.



CHAPTER 5

Degeneration to a Nodal Cubic

The goal of this chapter is to identify the limit Hodge structure for
the degeneration of cyclic cubic fourfolds associated to a generic nodal
degeneration of cubic threefolds. It is very similar to the previous
chapter, so we will be more brief. The result of this chapter that is
used in the proof of the main theorem of the monograph (Theorem 6.1)
is the following:

Theorem 5.1. The period map g : P̂Css → PΓ\CH10 carries the
discriminant locus onto a divisor.

One should expect such a result, because at a node of a cubic three-
fold T , the tangent cone is a cone over P 1 × P 1, and the lines on T
through the node sweep out a (3, 3) curve in the P 1 ×P 1. The generic
genus 4 curve arises this way, providing 9 moduli. Our approach is to
show that the interesting part of the limiting Hodge structure is that
of the K3 surface K which is the 3-fold cover of P 1×P 1 branched over
this curve. This Hodge structure is the same as the one studied by
Kondō in his work on moduli of genus four curves [22].

Suppose T is a generic nodal cubic threefold; we choose homoge-
neous coordinates x0, . . . , x4 such that the node is at [1:0: . . . :0] ∈ P 4

and T has defining equation

F (x0, . . . , x4) = x0(x1x2 + x3x4) + f(x1, . . . , x4) = 0 ,

where f is a homogeneous cubic. Then V ⊆ P 5 is defined by F+x3
5 = 0,

and we will project V away from P = [1:0:0:0:0:0] to the P 4 with
homogeneous coordinates x1, . . . , x5. Every reference to P 4 will be to
this P 4. We may suppose by genericity that the intersection K of
x1x2 + x3x4 = 0 and f(x1, . . . , x4) + x3

5 = 0 in P 4 is smooth. The
importance of this surface is that projection away from the cusp of
V at P = (1, 0, 0, 0, 0, 0) is an isomorphism from V , minus P and the
preimage of K, to its image. Over K, the projection is a C-bundle. The
notation reflects the fact that K is a K3 surface, since it is a smooth
(2, 3)-intersection in P 4. We will write Q for the quadric x1x2+x3x4 = 0
in P 4. The vertex of Q is not in K, because K is smooth.

68
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By scaling the variables, we may suppose that F + tx3
0 defines a

smooth threefold for all t ∈ ∆ − {0}. This pencil of threefolds is well-
suited to our coordinates, but any pencil gives the same limiting Hodge
structure, provided that its generic member is smooth. As in chapter 4
we will write V for the associated family of cubic fourfolds:

V =
{(

[x0: . . . :x5], t
)
∈ P 5 × ∆

∣∣∣

x0(x1x2 + x3x4) + f(x1, . . . , x4) + x3
5 + t x3

0 = 0
}

.

One checks that V is smooth away from the cusp P of the central
fiber, and of course the central fiber itself is smooth away from P . We
let V0V0 be the degree six base extension, got by setting t = s6. By
Lemma 1.4, the monodromy of V on H4 over ∆ − {0} has order 3;
therefore of monodromy of V0 is trivial. Below, we will define V1, V2

and V3 by repeated blowups. The last blowup V3 turns out to be a
semistable model for the degeneration. The reason we take six rather
than three as the degree of the base extension is that this choice makes
the multiplicities of the components of the central fiber of V3 all be 1.
As in chapter 4 we write Ei for the exceptional divisor of Vi → Vi−1,
and we use primes to indicate proper transforms of V and the Ei.

Regarding x1, . . . , x5 as affine coordinates on C5 = {x0 6= 0} ⊆ P 5,
we have

V0 ∩ (C5 × ∆) =
{
(x1, . . . , x5, s) ∈ C5 × ∆

∣∣

x1x2 + x3x4 + f(x1, . . . , x4) + x3
5 + s6 = 0

}
.

By the Morse lemma, there is a neighborhood W of the origin in C4

with analytic coordinates y1, . . . , y4, such that the xi and yi agree to
first order, and

x1x2 + x3x4 + f(x1, . . . , x4) = y1y2 + y3y4 .

To emphasize the analogy with the chordal case, we will write z for x5.
Then

V0 ∩ (W × C × ∆) =
{
(y1, . . . , y4, z, s) ∈ W × C × ∆

∣∣

y1y2 + y3y4 + z3 + s6 = 0
}

.

The obvious thing to do is blow up the origin with weights (3,3,3,
3,2,1). To describe this intrinsically, we define I to be the ideal sheaf
on P 5 × ∆ defining the subvariety

(
the line in P 5 joining [1:0:0:0:0:0] and [0:0:0:0:0:1]

)
× ∆ ,
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and we define J as in (4.3.1). We define P̂ 5 × ∆ as the blowup of P 5×∆
along J , and V1 as the proper transform of V0. The exceptional divisor

in P̂ 5 × ∆ is a copy of P (3, 3, 3, 3, 2, 1), and the exceptional divisor E1

of V1 → V0 is the hypersurface in P (3, 3, 3, 3, 2, 1) defined by

(5.1) y1y2 + y3y4 + z3 + s6 = 0 .

As in chapter 4, we will use primes to indicate proper transforms of V
and the various exceptional divisors. The exceptional divisor of V ′ → V
is the hypersurface in P (3, 3, 3, 3, 2) defined by

y1y2 + y3y4 + z3 = 0 and s = 0 .

This lets one see that σ acts trivially on V ′∩E1, because σ = diag[1, 1,
1, 1, ω] acts on P (3, 3, 3, 3, 2) in the same way as the quasihomogeneous
scaling by ω̄, which of course acts trivially. Finally, calculations strictly
analogous to those of chapter 4 show that V1 is smooth away from the
surface S in P (3, 3, 3, 3) ∼= P 3 defined by (5.1) and s = z = 0. S
is a smooth quadric surface. Furthermore, any point of S admits a
neighborhood in V1 isomorphic to a neighborhood of the origin in C5,
modulo η = diag[ω, 1, 1, ω, ω̄]. This is exactly the same as the local
model near the singular set of chapter 4’s V1.

The second blowup V2 is the blowup of V1 along the ideal sheaf
K, where K is defined exactly as in chapter 4: it is generated by the
regular functions which either vanish to order 2 along S, or vanish to
order 3 at a generic point of V ′. Then the exceptional divisor E2 is a
P (1, 1, 2)-bundle over S. Now, P (1, 1, 2) is isomorphic to a cone in P 3

over a smooth plane conic, so each fiber has a singular point. These
turn out to be singular in V2 as well, and constitute the entire singular
locus Σ of V2, so Σ is a copy of S. Furthermore, near Σ, V2 is locally
modeled on C2 ×

(
C3/{±I}

)
, just as in chapter 4. It turns out, also

as in chapter 4, that V ′′ ∩Σ = ∅. Finally, we define V3 as the ordinary
blowup of V2 along Σ. Then E3 is a P 2-bundle over Σ. One can check
that V3 is smooth, and that the central fiber is a normal crossing divisor
with smooth components V ′′′, E ′′

1 , E ′
2 and E3 of multiplicity one.

Now we will study the central fiber of V3, in order to determine the
limiting Hodge structure. The first step is to rid ourselves of most of
the complication introduced by our blowups. Then we will study what
remains, the Hodge structures of V ′′ and E1.

Lemma 5.2. H4
(3)

(
V ′′′∪E ′′

1∪E ′
2∪E3; Q

)
= H4

(3)(V
′′; Q)⊕H4

(3)(E1; Q).

Proof. This is analogous to Lemma 4.4.2. We use cohomology
with rational coefficients throughout the proof. For the first step, the
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essential facts are the following. (i) The restriction of the projection
V3 → V2 to the central fiber is an isomorphism to V ′′∪E ′

1 ∪E2, except
over Σ. (ii) Over Σ, it is a P 2-bundle. (iii) σ fixes Σ pointwise. Then
Lemma 4.4.1 implies

H4
(3)

(
V ′′′ ∪ E ′′

1 ∪ E ′
2 ∪ E3

)
= H4

(3)

(
V ′′ ∪ E ′

1 ∪ E2

)
.

For the second step, the essential facts are (iv) E2 is a P (1, 1, 2)-bundle
over S, (v) E2 ∩E ′

1 and E2 ∩ V ′′ are P 1-bundles over S, (vi) E2 ∩E ′
1 ∩

V ′′ projects isomorphically to S, and (vii) σ fixes S pointwise. Then
Mayer-Vietoris implies

H4
(3)

(
V ′′ ∪ E ′

1 ∪ E2

)
= H4

(3)

(
V ′′ ∪ E ′

1

)
.

For the third step, the essential fact is (viii) σ acts trivially on V ′∩E1.
One can check that V ′′ ∩ E ′

1 is the proper transform of V ′ ∩ E1, so σ
acts trivially on V ′′ ∩ E ′

1. Then Mayer-Vietoris implies

H4
(3)

(
V ′′ ∪ E ′

1

)
= H4

(3)(V
′′) ⊕ H4

(3)(E
′
1) .

For the final step, the essential facts are (ix) E ′
1 ∩ E2 is a P 1-bundle

over S, so E ′
1 → E1 is an isomorphism except over S, over which it is

a P 1-bundle, and (x) σ acts trivially on S. Then Lemma 4.4.1 implies
H4

(3)(E
′
1) = H4

(3)(E1). This completes the proof. �

Lemma 5.3. H4
(3)(E1; Q) is 2-dimensional, of type (2, 2).

Proof. This is an exercise in the Griffiths residue calculus, Propo-
sition 1.2. Regard E1 as a hypersurface in P (3, 3, 3, 3, 2, 1) with defin-
ing equation F = y1y2 + y3y4 + z3 + s6, as in (5.1). Because Ω has
weight fifteen, the nonzero rational differentials AΩ/F k with numer-
ator polynomial of lowest degree are those with k = 3 and A =
c1zs+c2s

3+(terms in the yi). Let res(AΩ/F k) be the Poincaré residue.
The primitive part of H4 is spanned by res(szΩ/F 3) and res(s3Ω/F 3).
The automorphism σ acts on these by multiplication by ω2 and ω, re-
spectively. Therefore H4

(3)(E1; Q) is 2-dimensional. It clearly has type

(2, 2). �

Lemma 5.4. V ′′ admits a morphism to P 4 which is an isomorphism
except over the K3 surface K and the vertex v of the quadric cone Q.
Over K, V ′′ is a smooth P 1-bundle, and the preimage of v is E ′

1 ∩ V ′′.

Proof. Let φ be the rational map V 99K P 4 given by projection
away from the cusp P . Then φ induces rational maps φ′ : V ′

99K P 4 and
φ′′ : V ′′

99K P 4. One can check by lengthy local coordinate calculations
that φ′′ is a morphism, not just a rational map, and has the properties
claimed in the lemma. We just give a summary.
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Consider a line ℓ in P 5 through P . If ℓ lies in V then φ(ℓ − {P})
lies in K. We write D for the union of the lines on V through P . If ℓ
makes contact of order only 2 with V at P , then it meets V at exactly
one further point, and does so transversely. If it makes contact of order
exactly 3, then ℓ meets V only at P , and the corresponding point of
P 4 is in Q but not in φ(V −{P}). We conclude that φ identifies V −D
with P 4 − Q, and realizes D − {P} as a C-bundle over K ⊆ Q. We
write D′′ for the proper transform of D in V ′′.

In this proof we only care about divisors in V ′′, not in V2, so we
will write e1 for V ′ ∩ E1, e′1 for V ′′ ∩ E ′

1 and e2 for V ′′ ∩ E2. One can
check that e′1 is the proper transform of e1.

Local calculations show that φ′ is regular except along S, and carries
e1 − S to v. Further calculations show that φ′′ is regular on all of
V ′′, and therefore φ′′ carries e′1 to v. The behavior of φ′′ on e2 is
easy to understand. We know that e2 is a P 1-bundle over the smooth
quadric surface S, and that Q is a cone over a smooth quadric surface.
Therefore it is not surprising that (i) φ′′ carries each fiber P 1 of e2

isomorphically onto a line in Q through v, and (ii) the only points of
e2 that φ′′ carries to v are in e2 ∩ e′1. It follows from (ii) that the fiber
of φ′′ over v is exactly e′1.

It remains to show that φ′′ is an isomorphism over P 4 − (K ∪ {v})
and a smooth P 1-bundle over K. Because φ′′ maps V ′′ onto P 4, the
image of e2 must contain Q−(K∪{v}) and hence be equal to Q. Since
P 4 is smooth and D′′ and e′1 are the only divisors in V ′′ that φ′′ can
crush to lower-dimensional varieties, Zariski’s main theorem implies
that φ′′ is an isomorphism except over the image K ∪ {v} of D′′ ∪ e′1.
So all that remains is to show that φ′′−1(K) is a smooth P 1-bundle
over K. First, by (i) above, each point of K has only one preimage
in e2, so each point of k has preimage C ∪ {point} in V ′′. It follows
that D′′ is the full preimage of K. Also, φ′′ restricts to an isomorphism
e2 − e′1 → Q − {v}. This implies that φ′′−1(K) ∩ e2 is a copy of K.

D′′ is obviously smooth away from e2. To show it is smooth at a
point d of D′′ ∩ e2, it suffices to exhibit a smooth curve in V ′′ through
d that is transverse to D′′. Since φ′′−1(K) is a copy of K, we can just
take a curve in e2 transverse to this copy of K. Since e2 − e′1 maps
isomorphically to its image, the image curve is transverse to K, so
the original curve must be transverse to D′′. To show that D′′ is a
fibration over K, we will show that the rank of φ′′|D′′ is 2 everywhere.
This clearly holds at every point of D′′ − e2. If the rank were < 2 at a
point d of D′′ ∩ e2, then the rank of φ′′ : V ′′ → P 4 at d would be < 3,
which is impossible since φ′′|e2

is a local isomorphism at d. �
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Lemma 5.5. The map φ′′ : V ′′ → P 4 of Lemma 5.4 induces an
isomorphism

H4
(3)(V

′′; Q) ∼= H2
(3)(K; Q).

Proof. From Lemma 5.4, one knows that

(i) if x ∈ P 4 − (K ∪ {v}), then φ′′−1(x) is a point;

(ii) The part of V ′′ over K is a P 1-bundle;

(iii) φ′′−1(v) = E ′
1∩V ′′ is a copy of the hypersurface y1y2 +y3y4 +z3

in P (3, 3, 3, 3, 2); by projecting away from [0: . . . :0:1], one checks that
this is a copy of P 3. We saw above that σ acts trivially on it.

It follows that the only terms of the Leray spectral sequence which
can contribute to H4

(3)(V
′′) are

(i′) H4
(3)(P

4, φ′′
∗Q),

(ii′) H2
(3)(K, R2φ′′

∗Q),

(iii′) H0
(3)(v, R4φ′′

∗Q).

Only the middle term (ii′) is nonzero, and it is H2
(3)(K; Q). The lemma

follows. �

Lemma 5.6. There is an isogeny of Eisenstein Hodge structures

H4
(3)(V̂ ) → H2

(3)(K) ⊕ E
of weight (−1,−1), where E indicates the 1-dimensional Eisenstein lat-
tice with Hodge structure pure of type (1, 1).

Proof. This follows from the isomorphisms

H4
(3)(V̂ ; Q) ∼= H4

(3)(V
′′; Q) ⊕ H4

(3)(E1; Q)

∼= H2
(3)(K; Q) ⊕ Q2

of Lemmas 5.2, 5.3 and 5.5, together with the fact that the isomor-
phism H4

(3)(V
′′) → H2

(3)(K; Q) is a map of Hodge structures of weight

(−1,−1). The latter fact comes from the fact that the restriction of
V ′′ → P 4 to the preimage of K is a P 1-bundle over K. �

Now, K lies in the quadric cone Q, and projection away from the
vertex realizes K as a 3-fold cover of P 1 × P 1 branched over a (3, 3)
curve C. This curve has genus 4, and the generic genus 4 curve arises
this way. Kondō [22] showed that H2

(3)(K; Q) has dimension 20, and
that the Hodge structure of K contains enough information to recover
C, up to an automorphism of P 1 × P 1. Therefore, as C varies over
the (3, 3) curves in P 1 × P 1, the associated K3 surfaces provide a 9-
dimensional family of Hodge structures.
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Proof of Theorem 5.1: This is essentially the same as Theo-
rem 4.1. The previous lemma and the exactness of the 3-part of the
Clemens-Schmid sequence

· · · → H4
(3)(V3,V∗

3 ; Q) → H4
(3)(V̂ ; Q) → lim

s→0
H4

(3)(V̂s; Q) → 0

imply that the limit Eisenstein Hodge structure is isogenous to that of
K (plus a 1-dimensional summand). Then Kondō’s work shows that
the Eisenstein Hodge structures form a 9-dimensional family. �



CHAPTER 6

The Main Theorem

Recall that Mf
0 and M0 are the moduli spaces of framed and un-

framed smooth cubic threefolds. We also define Mss as the GIT mod-
uli quotient PCss//SL(5, C), and Ms as the corresponding stable locus.
Since we needed to blow up PC before extending the period map, we
also define

M̂f
s = PFs/PG

M̂s = P̂Cs/PG

M̂ss = P̂Css//SL(5, C) .

These moduli spaces fit into the commutative diagram:

Mf
0 −−−→ M̂f

sy
y

M0 −−−→ M̂s −−−→ M̂ss

We saw in Lemma 1.8 that Mf
0 is a complex manifold. Since PG

acts properly on P̂Cs, we see that M0, M̂f
s and M̂s are analytic spaces.

We will see below that Mf
s is smooth. Since it is a GIT quotient, M̂ss

is a compact algebraic variety.

The period maps PFs → CH10 and P̂Css → PΓ\CH10 are PG-

invariant, and hence induce maps on M̂f
s and M̂ss. The main theorem

of the monograph, Theorem 6.1, says that the first of these maps is an
isomorphism and that the second is almost an isomorphism. For the
statement of the theorem, it is convenient to refer to the discriminant

locus of M̂f
s , by which we mean the image of the discriminant locus

of PFs, and similarly for the chordal locus. Let H∆ (resp. Hc) be the
union of the discriminant (resp. chordal) hyperplanes in CH10 (defined
just before Theorem 3.7), and let H = H∆ ∪Hc.

Theorem 6.1. The period map g : M̂f
s → CH10 is an isomor-

phism. It identifies the discriminant (resp. chordal) locus of M̂f
s

with H∆ (resp. Hc), and Mf
0 with CH10 − H. The induced map

75
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g : M̂ss → PΓ\CH10 is an isomorphism except over the A5 cusp,
whose preimage is a rational curve. Finally, this map induces an iso-
morphism of Ms with PΓ\(CH10 −Hc).

Proof of Theorem 6.1: As a blowup of a GIT quotient, M̂ss

is compact. And Theorem 3.10 asserts that the period map carries

M̂ss−M̂s to the boundary of PΓ\CH10. Therefore M̂s → PΓ\CH10

is proper. It follows that M̂f
s → CH10 is proper. The discriminant lo-

cus is carried into H∆ by Theorem 3.7, and has image a divisor by The-
orem 5.1. Therefore its image is a union of discriminant hyperplanes.
By Lemma 6.2 below, all discriminant hyperplanes are PΓ-equivalent,
so the discriminant locus has image exactly H∆. The same argument,
using Theorem 4.1, shows that the chordal locus has image Hc.

Now we claim that M̂f
s → CH10 is a local isomorphism. First ob-

serve that its restriction to the preimage of CH10−H is an isomorphism.
The reason for this is that, by Theorem 3.7, g−1(H) is contained in the
union of the discriminant and chordal divisors, thus the preimage of
CH10 −H is contained in Mf

0 . But it follows from Theorem 1.9 that

the restriction of g to Mf
0 is an isomorphism onto its image. Therefore

g : M̂f
s → CH10 is a proper modification of CH10. (See [17, pp. 214–

215].) Since CH10 is smooth, g is a local isomorphism at a point x of

M̂f
s unless it crushes some divisor passing through x to a variety of

lower dimension. Since Mf
0 maps isomorphically to its image, and, by

Theorems 4.1 and 5.1, the discriminant and chordal loci are mapped
onto divisors, no divisors are crushed. Therefore the period map is
everywhere a local isomorphism. Since it is a generic isomorphism, it
is an isomorphism. It follows that it identifies Mf

0 with CH10 −H.

(One can avoid the machinery of proper modifications by applying
Zariski’s main theorem to

(6.1) PΓ′\M̂f
s → PΓ′\CH10 ,

where PΓ′ is a torsion-free finite index subgroup of PΓ. Because this
is a birational isomorphism of algebraic varieties, and the target space
is smooth, one can apply a version of Zariski’s main theorem, Theo-
rem 3.20 of [29], to deduce that (6.1) is a local isomorphism, hence an

isomorphism. That M̂f
s → CH10 is an isomorphism follows.)

To prove the claim about M̂ss, it suffices to examine the cusps of

PΓ\CH10. The D4 cusp is the image of just one point of M̂ss, so
the period map is finite there. Since the Baily-Borel compactification
is a normal analytic space, it is an isomorphism there. The preimage
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of the A5 cusp consists of the (classes of the) threefolds TA,B from
Theorem 3.2(iii), together with their limiting point, the (class of the)
points from Theorem 3.2(vi). These form a rational curve because they
are parameterized by 4A/B2.

For the last claim, we observe that Ms is M̂s minus the chordal
locus. This follows from a comparison of the GIT analyses in Theo-
rem 3.2 and [1]. This makes the last claim obvious. �

We used the following lemma in the proof of the theorem.

Lemma 6.2. Any two discriminant (resp. chordal) hyperplanes in
CH10 are PΓ-equivalent.

Proof. Suppose r ∈ Λ is a chordal root. Since 〈r|r〉 = 3 and
〈r|Λ〉 = 3E , 〈r〉 is a summand of Λ. Its orthogonal complement there-
fore has the same determinant as Λ10 = EE

8 ⊕EE
8 ⊕

(
0 θ
θ̄ 0

)
, namely −35.

Also, θ(r⊥)∗ = r⊥, since r⊥ ⊆ Λ. There is a unique E-lattice L of de-
terminant −35 and signature (9, 1) satisfying L ⊆ θL∗, by Lemma 2.6
of [5]. Therefore r⊥ ∼= Λ10. If s is another chordal root then the same
argument shows that Λ = 〈s〉 ⊕ Λ10. So there is an isometry of Λ
carrying r to s. This proves transitivity on chordal roots.

We will prove three claims below. (i) Any two index 3 sublattices of
Λ10 are isometric; we write Λ′

10 for such a lattice. (ii) For any nodal root
r ∈ Λ, r⊥ ∼= Λ′

10. (iii) There are exactly two enlargements of r⊥ ⊕ 〈r〉
to a copy of Λ in which r is a nodal root, and these are exchanged
by negating r⊥ while leaving r fixed. Given the claims, a standard
argument shows that r can be carried to any other nodal root s by an
element of Γ. Namely, by (ii), there is an isometry r⊥⊕〈r〉 → s⊥⊕〈s〉
carrying r to s. This isometry carries the enlargement Λ of r⊥⊕ 〈r〉 to
an enlargement M of s⊥ ⊕ 〈s〉. By (iii), M is either Λ itself or else is
carried to Λ by negating s⊥. The result is an isometry of Λ carrying r
to s.

Now we prove (i). We will even show that Aut Λ10 acts transitively
on the index 3 sublattices of Λ10. The key ingredient is a symplectic
form on Λ10/θΛ10. For any E-lattice L satisfying L ⊆ θL∗, the F3-
vector space L/θL admits an antisymmetric pairing, defined as follows:
if v, w ∈ L have images v̄, w̄ ∈ L/θL, then (v̄, w̄) ∈ F3 is the reduction
of 1

θ
〈v|w〉 modulo θ. It is easy to check that if v ∈ L has norm 3 and has

inner product θ with some element of L, then v̄ does not lie in the kernel
of (·, ·), and the triflections in v act on L/θL as the transvections in v̄.
Since Λ10 = θΛ∗

10, the pairing on Λ10/θΛ10 is nondegenerate. Index 3
sublattices of Λ10 correspond to hyperplanes in the F3-vector space, so
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to prove transitivity of Aut Λ10 on such subspaces, it suffices to show
that it acts as Sp(10, F3). This is easy, since every root of Λ10 gives a
transvection.

Before proving (ii), we prove the weaker claim that for any nodal
root r ∈ Λ,

r⊥ ⊕ 〈r〉 ∼= Λ′
10 ⊕ (3) ∼= (3) ⊕ EE

8 ⊕ EE
8 ⊕ (−3) ⊕ (3) .

Because 〈r|Λ〉 = θE , r⊥⊕〈r〉 has index 3 in Λ and contains θΛ. There-
fore it is completely determined by its image S in W = Λ/θΛ, which
is r̄⊥. The kernel of the pairing is 1-dimensional, coming from the first
summand of (1.8), and r̄ is not in this kernel. Therefore r̄⊥ is the
preimage under W → W/ ker W of a hyperplane in W/ ker W . As we
saw above, Aut Λ10 ⊆ Γ acts on W/ ker W = Λ10/θΛ10 as Sp(10, F3),
so it acts transitively on hyperplanes in W/ ker W . It follows that the
isomorphism class of r⊥⊕〈r〉 is independent of r, so it can be described
by working a single example. We take r = (0, . . . , 0, 1, ω) in the coor-
dinates of (1.8), and write a for (1, 0, . . . , 0) and b for (0, . . . , 0, 1, ω̄).
Then r⊥ is (3) ⊕ EE

8 ⊕ EE
8 ⊕ (−3), with a spanning the first summand

and b spanning the last.

Now we prove (ii). It suffices to prove that if s is a norm 3 vector
of N = Λ′

10 ⊕ (3), such that 〈s〉 is a summand, then s⊥ ∼= Λ′
10. In

order to do this we need to refer to the F3-valued symmetric bilinear
form on θN∗/N , got by reducing inner products modulo θ. Because
θ(EE

8 )∗ = EE
8 , θN∗/N ∼= F3

3, with a basis consisting of ā, b̄ and r̄, which
are the reductions modulo N of a/θ, b/θ and r/θ. The norms of ā, b̄
and r̄ are 1, −1 and 1. Since 〈s〉 is a summand of N , 〈s|N〉 = 3E , so
s/θ ∈ θN∗. We write s̄ for the image of s/θ in θN∗/N , and observe that
s̄2 = 〈s/θ|s/θ〉 = 1. Enumerating the elements of θN∗/N of norm 1,
we find that s̄ is one of ±ā, ±r̄, or ±ā ± b̄ ± r̄. In every case there is
a 1-dimensional isotropic subspace S of θN∗/N orthogonal to s̄. Two
examples: if s̄ = ā then we can take S to be the span of b̄ + r̄, and if
s̄ = ā+b̄+r̄ then we can take S to be the span of ā+b̄. We define N+ to
be the preimage of S in θN∗. This is spanned by N and a vector of norm
divisible by 3, whose inner products with elements of N are divisible
by θ. Therefore θ(N+)∗ ⊆ N+. Now, the determinant of Λ is −36, so
the index 3 lattice N has determinant −37, so N ’s index 3 superlattice
N+ has determinant −36. Also, 〈s|N+〉 = 3, because S ⊥ s̄. Therefore
〈s〉 is a summand of N+, so its complement in N+ has determinant
−35 and is therefore a copy of Λ10. Since the complement of s in N
has index three in the complement in N+, it is Λ′

10 by (i), proving (ii).



6. THE MAIN THEOREM 79

Finally we prove (iii). Using N , ā, b̄ and r̄ as above, we must
determine the enlargements M of Λ′

10⊕〈r〉 that are copies of Λ in which
r is a nodal root. Such an M must satisfy M ⊆ θM∗ and contain a
vector having inner product θ with r. Such an M is the preimage of an
isotropic line in θN∗/N which is not orthogonal to r̄. There are just
two such subspaces, the spans of r̄− b̄ and r̄ + b̄. The first enlargement
is Λ itself. The two enlargements are exchanged by negating r⊥. This
proves (iii). �



CHAPTER 7

The Monodromy Group and Hyperplane

Arrangement

We have already discussed several facets of the action of Γ on various
objects associated to Λ. Theorem 3.11 shows that Γ acts with two orbits
on primitive null vectors, corresponding to the two boundary points of
PΓ\CH10, and Lemma 6.2 shows that Γ acts with two orbits on roots
of Λ, corresponding to discriminant and chordal hyperplanes. In this
chapter, we gather a few more results of this flavor, and determine the
image of the monodromy representation.

Theorem 7.1. For F ∈ C0, the monodromy representation

π1(C0, F ) → Γ(V )

has image consisting of all isometries of Λ(V ) with determinant a cube
root of unity.

Proof. We first show that the image of Pρ
(
π1(C0, F )

)
⊆ PΓ(V )

is all of PΓ(V ). This amounts to the connectedness of F0, which is the
same as the connectedness of PF0, which is the same as the connect-

edness of PFs, which is the same as the connectedness of M̂f
s , which

by Theorem 6.1 is the same as the connectedness of CH10, which is
obvious.

Now it suffices to show that ρ
(
π1(C0, F )

)
contains ω̄I and does not

contain −I. To see the latter, observe that π1(C0) is generated by
meridians, which ρ maps to ω-reflections, so every element of π1(C0)
acts on Λ(V ) by an isometry with determinant a cube root of 1. (An-
other way to see that −I is not in the monodromy group is to use the
ideas of the proof of Theorem 1.9: the negation map of H4

0 (V ; Z) does
not extend to an isometry of H4(V ; Z) fixing η(V ).)

Now we prove that ω̄I lies in the monodromy group. Consider the
cubic threefold T defined by

F = x0x
2
3 − x0x2x4 + x2

1x4 + x2
2x3 .

80
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By the method of [1, §2], it has an A7 singularity at [1:0:0:0:0], an
A4 singularity at [0:0:0:0:1], and no other singularities. Using Lem-
mas 1.4 and 1.6 shows that ρ(π1(C0, F )) contains an image of the prod-
uct B8 × B5 of the 8-strand and 5-strand braid groups, with standard
generators a1, . . . , a7 and b1, . . . , b4 mapping to the ω-reflections in roots
r1, . . . , r7 and s1, . . . , s4 of Λ(V ), no two of which are proportional. The
method described before Theorem 3.4 shows that the ri (resp. si) span
a nondegenerate E-lattice R (resp. S) of dimension 7 (resp. 4). Since
R and S are orthogonal and nondegenerate, they meet only at 0, so
Λ(V ) = R ⊕ S up to finite index. A generator c8 (resp. c5) for the
center of B8 (resp. B5) is (a1 . . . a7)

8 (resp. (b1 . . . b4)
5), so it acts on R

(resp. S) as a scalar of determinant ω56 (resp. ω20), i.e., as the scalar
ω̄ (resp. ±ω̄). Therefore one of c5c

±1
8 acts on Λ(V ) by ω̄I. �

Theorem 7.2. (i) No two chordal hyperplanes meet in CH10. (ii)
If a discriminant hyperplane and a chordal hyperplane meet in CH10,
then they are orthogonal.

Proof. If r and s are a nodal and a chordal root, then s2 = r2 = 3
and 〈r|s〉 is divisible by 3. If 〈r|s〉 = 0 then they are orthogonal, and
otherwise the span of r and s has inner product matrix which is not
positive-definite. In this case, r⊥ and s⊥ do not meet in CH10. This
proves (ii).

Now we prove (i). Suppose r and s are non-proportional chordal
roots. By the argument for (ii), if r⊥ and s⊥ meet, then r ⊥ s. So
we must show that r ⊥ s is impossible. By Lemma 6.2, we may take
s to be (1, 0, . . . , 0) in the coordinates of (1.8). If r ⊥ s then r lies in
Λ10. Now, r is primitive because its norm is 3, and by θΛ∗

10 = Λ10, r
makes inner product θ with some element of Λ10. Therefore r cannot
be a chordal root. �

Theorem 7.3. The discriminant and chordal loci of M̂s have finite
branched covers which are isomorphic.

Proof. Consider the nodal root r = (0, . . . , 0, 1, ω) and chordal
root s = (1, 0, . . . , 0), in the notation of (1.8). The discriminant (resp.

chordal) locus of M̂s is the image in PΓ\CH10 of r⊥ (resp. s⊥). We
have

r⊥ ⊕ 〈r〉 = 〈s〉 ⊕ EE
8 ⊕ EE

8 ⊕ (−3) ⊕ 〈r〉 .

Let Γ′ be the subgroup of Γ preserving the sublattice r⊥⊕〈r〉, which has
index (310 −1)/2 = 29524 in Γ. The images of r⊥ and s⊥ in PΓ′\CH10

are isomorphic because r⊥ ⊕ 〈r〉 admits an isometry exchanging r and
s. �
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Remark. The same argument proves Theorem 3 in Kondō’s work
[22] on genus 4 curves, and a similar result relating nodal and hyper-
elliptic hyperplanes in his uniformization of the moduli space of genus
3 curves by the 6-ball.



Bibliography

[1] D. Allcock, The moduli space of cubic threefolds, J. Alg. Geom. 12 (2003)
201-223. Available at http://www.math.utexas.edu/∼allcock.

[2] D. Allcock, The Leech lattice and complex hyperbolic reflections Invent. Math.
140 (2000) 283-301. Available at http://www.math.utexas.edu/∼allcock.

[3] D. Allcock, J. Carlson, and D. Toledo, The complex hyperbolic geome-
try of the moduli space of cubic surfaces, J. Alg. Geom. 11 (2002) 659-
724. arXive:math.AG/0007048. Available at http://www.math.utexas.edu/
∼allcock.

[4] V. I. Arnold, V. V. Goryunov, O. V. Lyashko and V. A. Vasil’ev, Singularity
Theory I, Springer-Verlag, 1998.

[5] T. Basak, The complex Lorentzian Leech lattice and the bimonster, J. Algebra
309 (2007) 32–56.

[6] D. Birkes. Orbits of linear algebraic groups. Ann. Math., 93:459–475, 1971.
[7] E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du
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Index

( , ): Hodge-theoretic pairing
3

∫
V

α ∧ β̄ on H4(V ), 4

· the natural pairing on H4(V ), 2
〈 | 〉: Hermitian form

on Λ, 11
on Λ(V ), 2

A: (ch. 2) an affine 11-space, 21
A(An), A(D4): Artin (generalized

braid) groups, 8
Bn: braid group on n strands, 10
B: (ch. 4) infinitesimal base locus of

degeneration to chordal cubic
(12 points), 48

B: (ch. 2) a P 12 ⊆ PC transverse to
chordal locus, 21

B̂: (ch. 2) proper transform of B, 21
C: 6-fold cover of R ∼= P 1 branched

over B, 50, 51
C: space of all nonzero cubic forms

in five variables, 1
C0: set of F ∈ C defining smooth

schemes, 1
Cs: set of GIT-stable F ∈ C, 1
CHn: complex hyperbolic space, ix
CH(W ): complex hyperbolic space

of a vector space W , 5
CH10: CH(Λ ⊗E C), 13
CH(V0): local system of CH10’s, 6
D: the diagonal group

{I, ωI, ω̄I} ⊆ GL5C, 12
∆: (ch. 4–5) the unit disk, 48
∆: (elsewhere) the discriminant

C − C0 or its image in PC, 1

∆̂: proper transform of ∆ in P̂C, 16
E: Euler vector field, 4

E: exceptional divisor of P̂C → PC,
16

ET
∼= P 12: the part of E lying over a
chordal cubic T , 16

Ei: (ch. 4–5) exceptional locus of
Vi → Vi−1, 52, 69

E′
i, E′′

i : (ch. 4–5) proper transforms
of Ei, 52, 69

EE
8 : E-form of the E8 lattice, 11

E : the Eisenstein integers Z[ω], 1
F : cubic form in 5 variables; defines

T and determines V , 1
F0: set of all framings of all F ∈ C0,

12
g: the period map in various guises

as a map C0 → CH(V0), 7
as a map F0 → CH10, 13

as a map Mf
0 → CH10, 13

as a map M0 → PΓ\CH10, 13
as a map PFs → CH10, 43
as a map PCs → PΓ\CH10, 43

as a map P̂Css → PΓ\CH10, 45

as a map M̂f
s → CH10, 75

as a map M̂ss → PΓ\CH10, 76
G: GL5C/D, 12
Gu1,...,u12

: (ch. 2) specific family of
cubic threefolds, 18

Γ: isometry group of Λ, 12
Γ(V ): isometry group of Λ(V ), 7
H∗

0 : primitive cohomology, 2
H∗

ω: ω-eigenspace of σ, 4
H(k): kernel of pk(ζ); k-part of H ;

kth characteristic subspace, 50
H∆: hyperplane arrangement in

CH10 corresponding to
discriminant, x, 75
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Hc: hyperplane arrangement in
CH10 corresponding to chordal
cubics, x, 75

H = H∆ ∪Hc, 75
Hn: union of the mirrors of Rn, 39
η(V ): class of norm 3 in H4(V ; Z), 2
I: ideal sheaf on P 5 × ∆ used to

define J
(ch. 4), 54
(ch. 5), 69

J : ideal sheaf used to blow up V0

(ch. 4), 54
(ch. 5), 70

K: ideal sheaf used to blow up V1

(ch. 4), 55
(ch. 5), 70

K: K3 surface arising in nodal
degenerations, 68

Λ: E-lattice of signature (10, 1), 11
Λ(V ): primitive cohomology lattice

of V , as an E-module, x, 2
Λ(V0): local system of Λ(V )’s, 6
Λ10: E-lattice of signature (9, 1), 12
Λ10(C): Eisenstein Hodge structure

associated to C, 51
M0: moduli space of smooth cubic

threefolds, x, 13

Mf
0 : moduli of framed smooth cubic

threefolds, 13
Ms: moduli space of stable cubic

threefolds, x, 75
Mss: compact GIT moduli space

PCss//SL(5, C), x, 75

M̂s: moduli space P̂C/G, x, 75

M̂f
s : moduli space PFs/PG, 75

M̂ss: compact GIT moduli space

P̂Css//SL(5, C); blowup of
Mss, x, 75

pk: cyclotomic polynomial, 50
P : (ch. 5) cusp of V , 68
P : distinguished point on R, 18

P̂ 5 × ∆: (ch. 4–5) blowup of P 5 × ∆
along J , 54, 70

PC: projectivization of C, 1

P̂C: blowup of PC along the chordal
cubic locus, 16

P̂Cs: GIT-stable points of P̂C, 33

P̂Css: GIT-semistable points of P̂C,
33

PF0: quotient of F0 by the action of
C∗ ⊆ GL(5, C), 38

PFs: a branched cover of P̂Cs; Fox
completion of PF0, 39

Pρ: projective monodromy
representation
π1(PC0, T ) → PΓ(V ), 36

PΓ\CH10: Baily-Borel
compactification, x

π: projection P̂C → PC, 16
πT : projection T → C, 2
πV : projection V → C, 2
Q: (ch. 5) osculating quadric cone at

T ’s node in P 4, 68
R: RT for the standard chordal

cubic T , 18
RT : singular locus of a chordal cubic

T (a rational normal curve), 16
Rn: a finite complex reflection

group, 39
ρ: monodromy representation

π1(C0, F ) → Γ(V ), 7
S: (ch. 4–5) singular locus of V1 (a

surface), 55, 70
Σ: (ch. 4–5) singular locus of V2;

projects isomorphically to S, 55,
70

σ: automorphism x5 7→ ωx5, 2
T : cubic threefold F = 0; determines

the fourfold V , 1
T : universal family of cubic

threefolds, 1
T0: restriction of T to C0, 2
τ : unordered 12-tuple in RT

∼= P 1,
i.e., a point of ET , 17

τ0: 12 points concentrated at P , 20
θ: ω − ω̄ =

√
−3, 2

V : cyclic cubic cover of P 4 over T ;
determined by F , x, 1

V ′, V ′′, V ′′′: (ch. 4–5) proper
transforms of V in V1, V2, V3,
52, 69

Vt: (ch. 4–5) generic fiber of V , 49

V̂s: (ch. 4–5) generic fiber of V̂ , 49
V : (ch. 4–5) family of fourfolds over

∆, 48, 69
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V : (elsewhere) universal family of
cyclic cubic fourfolds, 2

V̂: (ch. 4–5) semistable model for the
degeneration V ; also called V3,
49, 52, 53, 55

V∗: (ch. 4) restriction of V to
∆ − {0}, 50

V0: (ch. 4–5) base extension of V of
degree six, 52, 53, 69

V0: (elsewhere) restriction of V to
C0, 2

V1: (ch. 4–5) blowup of V0 along J ,
52, 54, 70

V2: (ch. 4–5) blowup of V1 along K,
52, 55, 70

V3: (ch. 4–5) blowup of V2 along Σ,
52, 55, 70

Vi(0): (ch. 4–5) central fiber of Vi, 52
W : (ch. 4) coordinate neighborhood

used in the blowup V1 → V0, 58
Z: an isometry

Λ(V ) ⊗Z R → H4
ω(V ; C), 5

ω: exp(2πi/3), 1
Ω: projective volume form, 4
Ω(A): rational differential AΩ/F q+1,

4

action of G on F0, 12
action of G on V , 12
action of PΓ on F0, 12
braiding, 8
characteristic submodule/subspace,

50
chordal cubic, ix
chordal hyperplane, 43, 77
chordal root, 37
complex reflection, 7
cusp (A5 or D4), 47
discriminant hyperplane, 43, 77
Eisenstein Hodge structure, 49
Eisenstein integers, ix
framed smooth cubic form, 12
framing, 12
hexaflection, 7
k-part, 50
nodal root, 37
root, 7
standard chordal cubic, 18
triflection, 7

weighted blowup, 55


