
DERIVED ALGEBRAIC GEOMETRY

1. Introduction

1.1. Bezout’s Theorem. Let C,C ′ ⊆ P2 be two smooth algebraic curves of degrees n and m in the complex
projective plane P2. If C and C ′ meet transversely, then the classical theorem of Bezout (see for example
[10]) asserts that C ∩ C ′ has precisely nm points.

We may reformulate the above statement using the language of cohomology. The curves C and C ′ have
fundamental classes [C], [C ′] ∈ H2(P2,Z). If C and C ′ meet transversely, then we have the formula

[C] ∪ [C ′] = [C ∩ C ′],

where the fundamental class [C∩C ′] ∈ H4(P2,Z) ' Z of the intersection C∩C ′ simply counts the number of
points in the intersection. Of course, this should not be surprising: the cup-product on cohomology classes is
defined so as to encode the operation of intersection. However, it would be a mistake to regard the equation
[C] ∪ [C ′] = [C ∩ C ′] as obvious, because it is not always true. For example, if the curves C and C ′ meet
nontransversely (but still in a finite number of points), then we always have a strict inequality

[C] ∪ [C ′] > [C ∩ C ′]

if the right hand side is again interpreted as counting the number of points in the set-theoretic intersection
of C and C ′.

If we want a formula which is valid for non-transverse intersections, then we must alter the definition of
[C ∩ C ′] so that it reflects the appropriate intersection multiplicities. Determination of these intersection
multiplicities requires knowledge of the intersection C ∩C ′ as a scheme, rather than simply as a set. This is
one of the classical arguments that nonreduced scheme structures carry useful information: the intersection
number [C]∪ [C ′] ∈ Z, which is defined a priori by perturbing the curves so that they meet transversally, can
also be computed directly (without perturbation) if one is willing to contemplate a potentially non-reduced
scheme structure on the intersection.

In more complicated situations, the appropriate intersection multiplicities cannot always be determined
from the scheme-theoretic intersection alone. Suppose that C and C ′ are (possibly singular) subvarieties of
Pn, of complementary dimension and having a zero-dimensional intersection. In this case, the appropriate
intersection number associated to a point p ∈ C ∩ C ′ is not always given by the complex dimension of the
local ring

OC∩C′,p = OC,p ⊗OPn,p
OC′,p .

The reason for this is easy to understand from the point of view of homological algebra. Since the tensor
product functor ⊗OPn,p

is not exact, it does not have good properties when considered alone. According to
Serre’s intersection formula, the correct intersection multiplicity is instead the Euler characteristic

∑
(−1)idim Tor

OPn,p

i (OC,p,OC′,p).

This Euler characteristic contains the dimension of the local ring of the scheme-theoretic intersection as its
leading term, but also higher-order corrections. We refer the reader to [31] for further discussion of this
formula for the intersection multiplicity.

If we would like the equation [C] ∪ [C ′] = [C ∩ C ′] to remain valid in the more complicated situations
described above, then we will need to interpret the intersection C∩C ′ in some way which remembers not only
the tensor product OC,p ⊗OPn,p

OC′,p, but the higher Tor terms as well. Moreover, we should not interpret

these Tor-groups separately, but rather should think of the total derived functor OC,p ⊗
L
OPn,p

OC′,p as a kind

of “generalized ring”.
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These considerations lead us naturally to the subject of derived algebraic geometry. Using an appropriate
notion of “generalized ring”, we will mimic the constructions of classical scheme theory to obtain a theory of
derived schemes in which a version of the formula [C]∪ [C ′] = [C∩C ′] can be shown to hold with (essentially)
no hypotheses on C and C ′. Here, we must interpret the intersection C ∩C ′ in the sense of derived schemes,
and we must take great care to give the proper definition for the fundamental classes (the so-called virtual
fundamental classes of [4]).

To motivate our discussion of “generalized rings”, we begin by considering the simplest case of Bezout’s
theorem, in which C and C ′ are lines in the projective plane P2. In this case, we know that [C] ∪ [C ′] is
the cohomology class of a point, and that C intersects C ′ transversely in one point so long as C and C ′ are
distinct. However, when the equality C = C ′ holds, the scheme-theoretic intersection C ∩ C ′ does not even
have the correct dimension.

Let us now try to give an idea of how we might formulate a definition for “derived scheme-theoretic
intersections” which will handle the degenerate situation in which C = C ′. For simplicity, let us consider
only lines in the affine plane A2 ⊆ P2, with coordinate ring C[x, y]. Two distinct lines in A2 may be given
by equations x = 0 and y = 0. The scheme-theoretic intersection of these two lines is the spectrum of
the ring C[x, y]/(x, y) ' C, obtained from C[x, y] by setting the equations of both lines equal to zero. It
has dimension zero because C[x, y] is two-dimensional to begin with, and we have imposed a total of two
equations.

Now suppose that instead of C and C ′ being two distinct lines, they are actually two identical lines, both
of which have the equation x = 0. In this case, the affine ring of the scheme theoretic intersection is given
by C[x, y]/(x, x) ' C[y]. This ring has dimension one, rather than the expected dimension zero, because
the two equations are not independent: setting x = 0 twice is equivalent to setting x = 0 once. To obtain
derived algebraic geometry, we need a formalism of “generalized rings” in which imposing the equation x = 0
twice is not equivalent to imposing the equation once.

One way to obtain such a formalism is by “categorifying” the notion of a commutative ring. That
is, in place of ordinary commutative rings, we should consider categories equipped with “addition” and
“multiplication” operations (which are now functors, rather than ordinary functions). For purposes of the
present discussion, let us call such an object a categorical ring. We shall not give a precise axiomatization
of this notion, which turns out to be quite complicated (see [19], for example).

Example 1.1.1. Let Z≥0 denote the semiring of nonnegative integers. We note that Z≥0 arises in nature
through the process of “decategorification”. The nonnegative integers were introduced in order to count
finite collections: in other words, they correspond to isomorphism classes of objects in the category Z of
finite sets. Then Z is naturally equipped with the structure of a categorical semiring, where the addition is
given by forming disjoint unions and the multiplication is given by Cartesian products. (In order to complete
the analogy with the above discussion, we should “complete” the category Z by formally adjoining inverses,
to obtain a categorical ring rather than a categorical semiring, but we shall ignore this point.)

To simplify the discussion, we will consider only categorical rings which are groupoids: that is, every
morphism in the underlying category is an isomorphism. If C is a categorical ring, then the collection of
isomorphism classes of objects π0 C of C forms an ordinary ring. Every commutative ring R arises in this way:
for example, we may take CR to be a category whose objects are the elements of R and which contains only
identity maps for morphisms. The categorical rings which arise in this way are very special: their objects
have no nontrivial automorphisms. For a given commutative ring R, there are many other ways to realize an
isomorphism R ' π0 C with the collection of isomorphism classes of objects in a categorical ring C. A crucial
observation to make is that although C is not uniquely determined by R, there is often a natural choice for
C which is dictated by the manner in which R is constructed.

As an example, let us suppose that the commutative ring R is given as a quotient R′/(x − y), where R′

is some other commutative ring and x, y ∈ R′ are two elements. Suppose that the ring R′ has already been
“categorified” in the sense that we have selected some categorical ring C′ and an identification of R′ with
π0 C

′. To this data, we wish to associate some “categorification” C of R. Roughly, the idea should be to think
of x and y objects of C′, and to impose the relation x = y at the categorical level. However, it is extremely
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unnatural to ask that two objects in a category be equal; instead one should ask that they be isomorphic.
In other words, the quotient category C should not be obtained from C′ by identifying the objects x and y.
Instead we should construct C by enlarging C′ so that it includes an isomorphism α : x ' y. Since we want C
to be a categorical ring, the formation of this enlargement is a somewhat complicated business: in addition
to the new isomorphism α, we must also adjoin other isomorphisms which can be obtained from α through
addition, multiplication, and composition (and new relations, which may cause distinct isomorphisms in C′

to have the same image in C).
To make the connection with our previous discussion, let us note that the construction of C from C′ given in

the preceding paragraph is interesting even in the “trivial” case where x = y. In this case, x and y are already
isomorphic when thought of as objects of C′. However, in C we get a new isomorphism α between x and
y, which generally does not lie in the image of the natural map HomC′(x, y) → HomC(x, y). Consequently,
even though the natural quotient map R′ → R is an isomorphism, the corresponding “categorical ring
homomorphism” C′ → C need not be an equivalence of categories. Imposing the new relation x = y does not
change the collection of isomorphism classes of objects, but usually does change the automorphism groups of
the objects. Consequently, if we begin with any objects x and y, we can iterate the above construction two or
more times, to obtain a categorical ring C equipped with multiple isomorphisms x ' y. These isomorphisms
are (in general) distinct from one another, so that the categorical ring C “knows” how many times x and y
have been identified.

We have now succeeded in finding a formalism which is sensitive to “redundant” information: we just need
to replace ordinary commutative rings with categorical rings. The next question we should ask is whether
or not this formalism is of any use. Let us suppose that, in the above situation, C′ is discrete in the sense
that every object has a trivial automorphism group. We note that the ring R = R′/(x − y) of objects of C
may be naturally identified with the cokernel of the map

φ : R′ x−y
→ R′.

It turns out that the automorphism groups in C also carry interesting information: they all turn out to be
naturally isomorphic to the kernel of φ.

Let us return to geometry for a moment, and suppose that R′ is the affine ring of a curve (possibly
nonreduced) in A2 = SpecC[x, y]. Let R′′ = C[x, y]/(x − y) denote the affine ring of the diagonal. Then

the cokernel and kernel of φ may be naturally identified with Tor
C[x,y]
0 (R′, R′′) and Tor

C[x,y]
1 (R′, R′′). In

other words, just as the leading term in Serre’s intersection formula has a geometric interpretation in terms
of tensor constructions with ordinary commutative rings, we can obtain a geometric interpretation for the
second term if we are willing to work with categorical rings.

Unfortunately, this is far as categorical rings will take us. In order to interpret the next term in Serre’s
intersection formula, we would need to take “categorification” one step further and consider ring structures
on 2-categories. If we want to understand the entire formula, then we need to work with ∞-categories.
Fortunately, the ∞-categorical rings which we will need are of a particularly simple flavor: they are ∞-
groupoids, meaning that all of the n-morphisms are invertible for n ≥ 1. Although the general theory of
∞-categories is a hairy business, the ∞-groupoids are well-understood: they are essentially the same thing
as spaces (say, CW-complexes), as studied in homotopy theory. If X is any space, then it gives rise to an
∞-groupoid as follows: the objects are the points of X, the morphisms are the paths between points, the
2-morphisms are homotopies between paths, the 3-morphisms are homotopies between homotopies, and so
on. The converse assertion, that every ∞-groupoid arises in this way, is a generally accepted principle of
higher category theory.

This suggests that an ∞-categorical ring should be a topological space X equipped with some kind of
ring structure. The simplest way of formulating the latter condition is to require X to be a topological ring:
that is, a commutative ring with a topology, for which the addition and multiplication are continuous maps.

Remark 1.1.2. There exist other reasonable theories of “∞-categorical rings”, in which the ring axioms
need only hold only up to homotopy. In fact, the setting of topological commutative rings turns out to rather
restrictive: the categorical semiring Z of finite sets, discussed above, cannot be modelled by a topological



4 DERIVED ALGEBRAIC GEOMETRY

semiring. This is true even after passing to a categorical ring by formally adjoining “negatives”. We will
survey the situation in §2.6, where we argue that topological commutative rings seem better suited to
algebro-geometric purposes than their more sophisticated relatives.

Just as an ordinary scheme is defined to be “something which looks locally like SpecA where A is a
commutative ring”, a derived scheme will be defined to be “something which looks locally like SpecA where
A is a topological commutative ring”.

Remark 1.1.3. We should emphasize that the topology of such a ring A only matters “up to homotopy
equivalence”: it is simply a mechanism which allows us to discuss paths, homotopies between paths, and so
forth. The topology on A should be thought of as an essentially combinatorial, rather than geometric, piece
of data. Consequently, most of the topological rings which arise in mathematics are quite uninteresting from
our point of view. For example, any ring which is a topological vector space over R is contractible, and thus
equivalent to the zero ring. On the other hand, any p-adically topologized ring has no nontrivial paths, and
is thus equivalent to a discrete ring from our point of view. The topological rings which do arise in derived
algebraic geometry are generally obtained from discrete rings by applying various categorical constructions,
and are difficult to describe directly.

The theory of derived algebraic geometry bears some similarity to the theory of algebraic stacks. Both
theories involve some mixture of classical algebro-geometric ingredients (commutative algebra, sheaf theory,
and so forth) with some additional ideas which are category-theoretic, or homotopy-theoretic, in nature.
However, we should emphasize that the aims of the two theories are completely distinct. The main purpose
for the theory of algebraic stacks is to provide a setting in which various moduli functors are representable
(thereby enabling one to discuss, for example, a moduli stack of smooth curves of some fixed genus). This
is not the case for derived algebraic geometry. Rather, one should think of the relationship between derived
schemes and ordinary schemes as analogous to the relationship between ordinary schemes and reduced
schemes. If one considers only reduced test objects, then non-reduced schemes structures are of no help
in representing moduli functors because Hom(X, Y red)

∼
→ Hom(X, Y ) whenever X is reduced. The theory

of non-reduced schemes is instead useful because it enlarges the class of test objects on which the moduli
functors are defined. Even if our ultimate interest is only in reduced schemes (such as smooth algebraic
varieties), it is useful to consider these schemes as defining functors on possibly non-reduced rings. For
example, the non-reduced scheme X = SpecC[ε]/(ε2) is an interesting test object which tells us about
tangent spaces: Hom(X, Y ) may be thought of as classifying tangent vectors in Y .

The situation for derived schemes is similar: assuming that our moduli functors are defined on an even
larger class of test objects leads to an even better understanding of the underlying geometry. We will
illustrate this using the following example from deformation theory:

Example 1.1.4. Let X be a smooth projective variety over the complex numbers. The following statements
about the deformation theory of X are well-known:

(1) The first-order deformations of X are classified by the cohomology H1(X, TX) of X with coefficients
in the tangent bundle of X.

(2) A first-order deformation of X extends to a second-order deformation if and only if a certain ob-
struction in H2(X, TX) vanishes.

Assertion (1) is very satisfying: it provides a concrete geometric interpretation of an otherwise abstract
cohomology group, and it can be given a conceptual proof using the interpretation of H1 as classifying
torsors. In contrast, (2) is usually proven by an ad-hoc argument which uses the local triviality of the first
order deformation to extend locally, and then realizes the obstruction as a cocycle representing the (possible)
inability to globalize this extension. This argument is computational rather than conceptual, and it does
give not us a geometric interpretation of the cohomology group H2(X, TX). We now sketch an alternative
argument for (2) which does not share these defects.

As it turns out, H2(X, TX) also classifies a certain kind of deformation of X, but a deformation of X over
the “nonclassical” base SpecC[δ] where we adjoin a generator δ in “degree 1” (in other words, we take the
ordinary ring C and impose the equation 0 = 0 according to the recipe outlined earlier). Namely, elements
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of H2(X, TX) may be identified with equivalences classes of flat families over SpecC[δ] together with an
identification of the closed fiber of the family with X. In other words, H2(X, TX) classifies SpecC[δ]-valued
points of some moduli stack of deformations of X.

The interpretation of obstructions as elements of H2(X, TX) can be obtained as follows. The ordinary
ring C[ε]/(ε3) can be realized as a “homotopy fiber product” C[ε]/(ε)2 ×C[δ] C, for an appropriately chosen

map of “generalized rings” C[ε]/(ε2) → C[δ]. In geometric terms, this means that SpecC[ε]/(ε3) may be
constructed as a pushout SpecC[ε]/(ε2)

∐
SpecC[δ] SpecC. Therefore, to give a second-order deformation of

X, we must give X, a first order deformation of X, and an identification of their restrictions to SpecC[δ].
This is possible if and only if the first order deformation of X restricts to the trivial deformation of X over
SpecC[δ], which is equivalent to the vanishing of a certain element of H2(X, TX).

Derived algebraic geometry seems to be the appropriate setting in which to understand the deformation-
theoretic aspects of moduli problems. It has other applications as well, many of which stem from the so-called
“hidden smoothness” philosophy of Kontsevich. According to this point of view, if one works entirely in
the context of derived algebraic geometry, one can (to some extent) pretend that all algebraic varieties are
smooth. More precisely, many constructions which are usually discussed only in the smooth case can be
adapted to nonsmooth varieties using ideas from derived algebraic geometry:

• The cotangent bundle of a smooth algebraic variety may be generalized to the non-smooth case as
the cotangent complex.

• The deRham complex of a smooth algebraic variety can be generalized to the non-smooth case as
the derived deRham complex of Illusie (see [17]).

• In certain cases, one can mimic the usual construction of the sheaf of differential operators on
a smooth variety, using the tangent complex in place of the tangent bundle. This allows one to
formulate a theory of (complexes of) algebraic D-modules on a possibly singular algebraic variety
X, whose definition does not depend on (locally) embedding X into a smooth ambient variety.

• The fundamental class of an algebraic variety may be replaced by a more subtle “virtual fundamental
class”, which allows one to prove a Bezout-type theorem [C]∪ [C ′] = [C ∩C ′] in complete generality.

Remark 1.1.5. The freedom to compute with non-transverse intersections can be extremely useful, be-
cause interesting situations often possess symmetries which are lost after perturbation. As an example,
consider equivariant cobordism theory. Because transversality fails in the equivariant context, the classical
Pontryagin-Thom construction does not work as expected to produce equivariant spectra whose homotopy
groups are cobordism classes of manifolds equipped with smooth group actions (see [14]). Consequently,
one obtains two different notions of equivariant cobordism groups: one given by manifolds modulo cobor-
dism, and one given by the Pontryagin-Thom construction. The second of these constructions seems to
fit more naturally into the context of equivariant stable homotopy theory. The geometric meaning of the
latter construction can be understood in the setting of derived differential topology: the Pontryagin-Thom
construction produces a spectrum whose homotopy groups represent certain cobordism classes of equivariant
derived manifolds (a class of objects which includes non-transverse intersections of ordinary manifolds). In
the non-equivariant case, any derived manifold is cobordant to an ordinary manifold, but in the presence of
a group action this is not true.

We hope that the reader is now convinced that a good theory of derived algebraic geometry would be a
useful thing to have. The purpose of this paper is to provide the foundations for such a theory. We will
discuss derived schemes (and, more generally, derived versions of Artin stacks) from both a geometric and
functorial point of view. Our main result is an analogue of Artin’s representability theorem, which gives a
precise characterization of those functors which are representable by derived stacks. In [23] and [24] we shall
forge the link between the formalism developed here and some of the applications mentioned above.

There exist other approaches to derived algebraic geometry in the literature. The earliest of these is
the notion of a differential graded scheme (see [7], for example). This approach employs differential graded
algebras in place of topological rings. In characteristic zero, the resulting theory can be related to ours. In
positive characteristic, the notion of a differential graded scheme is poorly behaved. More recent work of
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Toën and Vezzosi has been based on the more sophisticated notion of an E∞-ring spectrum. We will survey
the relationship between these approaches in §2.6. It is worth noting that the proof of our main result,
Theorem 7.1.6, can be adapted to produce moduli spaces in the E∞-context.

Throughout the process of writing this paper, I have received advice and encouragement from many
people. In particular, I would like to thank Johan de Jong, Max Lieblich, Brian Conrad, Mike Hopkins,
Gabriele Vezzosi, and Bertrand Toën for many fruitful discussions on the subject matter of this paper. I
would also like to thank the theory group at Microsoft for hosting me while most of this paper was written.

1.2. Contents. We now outline the contents of this paper. After this introduction, we will begin in §2 by
reviewing some of the background material that we shall need from the theory of abstract stable homotopy
categories and structured ring spectra. Since these topics are somewhat technical and are adequately treated
in the literature, our exposition has the character of a summary.

In §3, we begin to study the “generalized rings” of the introduction in their incarnation as simplicial
commutative rings. We explain how to generalize many ideas from commutative algebra to this generalized
setting, and review the theory of cotangent complexes. Finally, we discuss an analogue of Popescu’s theorem
on the smoothing of ring homomorphisms, which applies in the derived setting.

Our study of commutative algebra takes on a more geometric flavor in §4, where we discuss various
topologies on simplicial commutative rings and the corresponding “spectrification” constructions. This leads
us to the definition of a derived scheme, which we shall proceed to relate to the classical theory of schemes,
algebraic spaces, and Deligne-Mumford stacks.

The geometric approach to scheme theory gives way in §5 to a more categorical approach. We show that
derived schemes may also be described as certain space-valued functors defined on simplicial commutative
rings. We then consider a more general class of functors, analogous to Artin stacks (and more generally,
higher Artin stacks) in the classical setting. We follow this with a discussion of various properties of derived
schemes, derived Artin stacks, and morphisms between them.

In §6, we will discuss the derived version of completions of Noetherian rings, and give a characterization
of those functors which are representable by complete local Noetherian rings. This result is closely related
to the infinitesimal deformation theory discussed in [30].

In §7, we give the proof of our main result, a derived version of Artin’s representability theorem. We
give a somewhat imprecise formulation as Theorem 1.2.1 below; the exact statement requires concepts which
are introduced later and will be given as Theorem 7.5.1. The theorem addresses the question of when an
abstract moduli functor F is representable by a geometric object, so that F(A) = Hom(SpecA,X) for some
derived scheme or derived stack X. We note that even if F is represented by an ordinary scheme, it will
not be a set-valued functor when we apply it to topological commutative rings. Hence, we consider instead
space-valued functors.

Theorem 1.2.1. Let R be a Noetherian ring which is excellent and possesses a dualizing complex (more
generally, R could be a topological ring satisfying appropriate analogues of these conditions). Let F be a
covariant functor from topological R-algebras to spaces (always assumed to carry weak homotopy equivalences
into weak homotopy equivalences). We shall suppose that there exists an integer n such that πi(F(A), p) = 0
for any i > n, any discrete R-algebra A, and any base point p ∈ F(A) (if n = 0, this says that when A is
discrete, F(A) is homotopy equivalent to a discrete space: in other words, F is set-valued when restricted to
ordinary commutative rings).

The functor F is representable by a derived stack which is almost of finite presentation over R if and only
if the following conditions are satisfied:

(1) The functor F satisfies the functorial criterion for being almost of finite presentation (that is, it
commutes with certain filtered colimits, up to homotopy).

(2) The functor F is a sheaf with respect to the étale topology.
(3) If A → C and B → C are fibrations of topological R-algebras which induce surjections π0A → π0C,

π0B → π0C, then F(A ×C B) is equivalent to the homotopy fiber product of F(A) and F(B) over
F(C).
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(4) The functor F is nilcomplete (see §3.4); this is a harmless condition which is essentially always
satisfied).

(5) If A is a (discrete) commutative ring which is complete, local, and Noetherian, then F(A) is equiv-
alent to the homotopy inverse limit of the sequence of spaces {F(A/mk)}, where m denotes the
maximal ideal of A.

(6) Let η ∈ F(C), where C is a (discrete) integral domain which is finitely generated as a π0R-algebra.
For each i ∈ Z, the tangent module Ti(η) (defined in §7.4) is finitely generated as a C-module.

Our proof of this result follows Artin (see [2]), making use of simplifications introduced by Conrad and
de Jong (see [8]) and further simplifications which become possible only in the derived setting.

We remark that the representability theorem is actually quite usable in practice. Of the six hypotheses
listed above, the first four are usually automatically satisfied. Condition (5) stated entirely in terms of the
restriction of the functor F to “classical” rings; in particular, if this restriction is representable by a scheme,
algebraic space, or algebraic stack, then condition (5) is satisfied. Condition (6) is equivalent to the existence
of a reasonable cotangent complex for the functor F , which is a sort of linearized version of the problem of
constructing F itself. This linearized problem is usually easy to solve using the tools provided by derived
algebraic geometry.

We conclude in §8 with some applications of our version of Artin’s theorem. In particular, we define derived
versions of Hilbert functor, the Picard functor, and the “stable curve” functor. Using our representability
theorem, we will prove the representability of these functors and thereby construct derived analogues of
Hilbert schemes, Picard schemes and moduli stacks of stable curves (some of these have been constructed in
characteristic zero by very different methods; see [7]).

Throughout this paper, we will prove “derived versions” of classical results in commutative algebra and
algebraic geometry, such as Popescu’s theorem on smoothing ring homomorphisms, Grothendieck’s formal
GAGA theorem, and Schlessinger’s criterion for the formal representability of “infinitesimal” moduli prob-
lems. These results are needed for our representability theorem and its applications, but only in their classical
incarnations. Consequently, some of our discussion is unnecessary: in particular §6 might be omitted entirely.
Our justification for including these results is that we feel that derived algebraic geometry can contribute to
our understanding of them, either by offering more natural formulations of the statements (as in the case of
Schlessinger’s criterion) or more natural proofs (as in the case of the formal GAGA theorem).

1.3. Notation and Terminology. It goes without saying that the study of derived algebraic geometry
requires a great deal of higher category theory. This is a story in itself, which we cannot adequately treat
here. For a review of ∞-category theory from our point of view, we refer the reader to [22]. We will
generally follow the terminology and notational conventions of [22] regarding ∞-categories. In particular,
we shall write S for the ∞-category of spaces.

However, there is one bit of terminology on which we will not follow [22], and that is our use of the word
“stack”. The word “stack” has come to have several closely related meanings in mathematics: a “sheaf” of
categories, a “sheaf” of groupoids, a geometric object which represents a groupoid-valued functor, and (in
[22]) a “sheaf” of ∞-groupoids. In this paper, we shall use the word “stack” in the third sense: in reference
to algebro-geometric objects. For all other purposes, we shall use the word “sheaf”, together some indication
of what sort of values are taken by the sheaf in question. If not otherwise specified, all sheaves are assumed
to be valued in the ∞-category S of spaces, rather than in the ordinary category of sets.

We will also make occasional use of the theory of ∞-topoi developed in [22]. This is not entirely necessary:
using Theorem 4.5.10, one can reformulate our notion of a derived scheme in a fashion which mentions only
ordinary topoi. However, in this case we would still need to deal with S-valued sheaves on topoi, and the
language of ∞-topoi seems best suited to this purpose (see Remark 4.1.2).

If C is an ∞-category and X ∈ C is an object, then we will write C/X for the slice ∞-category whose objects
are diagrams A → X in C. Dually, we write CX/ for the ∞-category whose objects are diagrams X → A in
C. Finally, given a morphism f : X → Y in C, we write CX/ /Y for the ∞-category (CX/)/Y ' (C/Y )X/.

We remark that for us, the ∞-category of S-valued sheaves on a topos X is not necessarily the one given
by the Jardine model structure on simplicial presheaves. We briefly review the situation, which is studied at
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greater length in [22]. If X is an ∞-topos, then the full subcategory τ≤0 X ⊆ X consisting of discrete objects
forms an ordinary (Grothendieck) topos. There is an adjoint construction which produces an ∞-topos ∆Y

from any ordinary topos Y. The adjunction takes the form of a natural equivalence

Hom(X ,∆Y) ' Hom(τ≤0 X ,Y)

between the ∞-category of geometric morphisms (of ∞-topoi) from X to ∆Y and the category of geometric
morphisms (of ordinary topoi) from τ≤0 X to Y. The Jardine model structure on simplicial presheaves
produces not the ∞-topos ∆Y but instead a localization thereof, which inverts the class of ∞-connected
morphisms. Although this localization leads to simplifications in a few places, we feel that it is on the whole
more natural to work with ∆Y. In practice, the distinction will never be important.

Throughout this paper, we will encounter ∞-categories equipped with a tensor product operation ⊗.
Usually this is related to, but not exactly a generalization of, some “ordinary” tensor product for modules
over a ring. For example, if R is a commutative ring, then the left derived functors of the ordinary tensor
product give rise to a tensor product operation ⊗L on the derived category of R-modules (and also on the
∞-category which gives rise to it). To avoid burdening the notation, we will omit the superscript. Thus,
if M and N are R-modules, M ⊗ N will not denote the ordinary tensor product of M and N but instead
the complex M ⊗L N whose homologies are the R-modules TorR

i (M,N). Whenever we need to discuss the

ordinary tensor product operation, we shall denote it by TorR
0 (M,N). We will use a similar notation for

dealing with inverse limits of abelian groups. If {An} is an inverse system of abelian groups, then it may be
regarded as an inverse system of spectra, and it has a homotopy inverse limit which is a spectrum that shall
be denoted by lim{An}. The homotopy groups of this spectrum are given by the right derived functors of

the inverse limit, and we shall denote them by limk{An} = π−k lim{An}. We remark that if {An} is given
by a tower

. . . → A2 → A1 → A0

of abelian groups, then limk{An} vanishes for k /∈ {0, 1}.
We use the word connective to mean (−1)-connected; that is, a spectrum X is connective if πiX = 0 for

i < 0. We call a space or spectrum X n-truncated if πiX is trivial for i > n (and any choice of base point).
We call a space or spectrum truncated if it is k-truncated for some k ∈ Z (and therefore for all sufficiently
large values of k).

2. Background

The purpose of this section is to provide a brief introduction to certain ideas which will appear repeatedly
throughout this paper, such as stable ∞-categories and structured ring spectra. Most of this material
is adequately treated in the literature, so we generally be content to sketch the ideas without going into
extensive detail.

2.1. Stable ∞-Categories. It has long been understood that there is a formal analogy between chain com-
plexes with values in an abelian category and topological spaces (so that one speaks of homotopies between
complexes, contractible complexes, and so forth). The analogue of the homotopy category of topological
spaces is the derived category of an abelian category, a triangulated category which provides a good setting
for many constructions in homological algebra. For some sophisticated applications, the derived category is
too crude: it identifies homotopic morphisms of chain complexes without remembering why they are homo-
topic. In order to correct this defect, it is necessary to view the derived category as the homotopy category
of some underlying ∞-category. We review how to do this in §2.3. It turns out that the ∞-categories which
arise in this way have special properties which are related to the additive structure of the underlying trian-
gulated category. The purpose of this section is to investigate ∞-categories with these special properties,
which we shall call stable ∞-categories.

The notion of a stable ∞-category has been investigated in the context of model categories under the
name of a stable model category (for a discussion, see [15]), and later in the more natural context of Segal
categories.

Definition 2.1.1. Let C be an ∞-category. An object of C is a zero object if it both initial and final.


