# A Crash Course on Compact Complex Surfaces 

Kenneth Chu<br>chu@math.utexas.edu<br>Department of Mathematics<br>University of Texas at Austin

April 24, 2007

## Abstract

- "Analytic invariants" of complex manifolds that the generalizations of the genus of curves, and their birationally invariant nature.
- Blow-up of a surface at a point.
- Birational classification of complex surfaces via minimal models. Enriques-Kodaira classification.
- Canonical models.
- Calabi-Yau manifolds and $K 3$ surfaces.
- Fano manifolds and del Pezzo surfaces.


## Examples of Compact Complex Surfaces

1. $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}\left(\cong\right.$ smooth quadric surface in $\left.\mathbb{P}^{3}\right)$, smooth hypersurfaces in $\mathbb{P}^{3}$, two-dimensional submanifolds of $\mathbb{P}^{n}$, Cartesian products of two compact Riemann surfaces.
2. fake projective planes := compact complex surfaces with $b_{1}=0, b_{2}=1$ not isomorphic to $\mathbb{P}^{2}$. Such a surface is projective algebraic and it is the quotient of the open unit ball in $\mathbb{C}^{2}$ by a discrete subgroup of $\mathrm{PU}(2,1)$. The first example (Mumford surface) was constructed Mumford using $p$-adic tecnhniques. Recently, all possible (17 known finite classes plus four possible candidates and no more) fake projective planes have been enumerated by Gopal Prasad and Sai-Kee Yeung. See abstract for colloquium on March 26, 2007.
3. Ruled surface $:=\mathbb{P}^{1}$-bundle over a compact Riemann surface.

- Can be shown: All ruled surfaces are projectivizations of rank-two vector bundles over compact Riemann surfaces.
- Hirzebruch surfaces: $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right), n=0,1,2, \ldots$

4. Elliptic surface $:=$ total space of a holomorphic fibration over a compact Riemann surface with generic fiber being a smooth elliptic curve.
5. 2-dimensional complex tori: $C^{2} / \Lambda$, where $\Lambda \cong \mathbb{Z}^{4}$ is a discrete lattice in $\mathbb{C}^{2}$.
6. Hopf surface := compact complex surface with universal cover $\mathbb{C}^{2}-\{0\}$. For example, $\left(\mathbb{C}^{2}-\{0\}\right) / \mathbb{Z}$, where the action of $\mathbb{Z}$ on $\mathbb{C}^{2}$ is generated by $\mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}: z \mapsto 2 z$.
(The Hopf surface is compact and non-Kähler.)

# In the Beginning ... 

## Goddess

## Said

## Let there be ...

## CURVES.

I am not joking; ask the string theorists.

## Classification of smooth compact complex curves by genus

$$
\text { analytic/topological genus } \quad g(C)=h^{0}\left(C, \Omega_{C}^{1}\right)=h^{0}\left(C, K_{C}\right)
$$

degree of canonical bundle

$$
\operatorname{deg}\left(K_{C}\right)=2 g(C)-2
$$

| $g(C)=h^{0}\left(K_{C}\right)$ | $\widetilde{C}$ | curvature | $\operatorname{deg}\left(K_{C}\right)$ | $\operatorname{kod}(C)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{P}^{1}$ | positive | $<0$ | $-\infty$ |
| 1 | $\mathbb{C}$ | flat | $=0$ | 0 |
| $\geq 2$ | $\mathbb{C} \mathbb{H}^{1}$ | negative | $>0$ | 1 |

## Canonical maps for curves of genus $\geq 2$

For a a line bundle $L$ on a smooth compact complex curve (Riemann surface) $C$,

$$
\begin{array}{r}
\operatorname{deg}(L)=\int_{C} c_{1}(L)=\left\{\begin{array}{c}
\text { sum of orders of zeros and poles of } \\
\text { a generic meromorphic section of } L
\end{array}\right\} \\
h^{0}(C, L)>0 \Longrightarrow \operatorname{deg}(L) \geq 0 ; \quad \text { conversely } \quad h^{0}(C, L)=0 \Longleftarrow \operatorname{deg}(L)<0
\end{array}
$$

The canonical map $\phi_{K_{C}}$ for a curve $C$ of genus $g \geq 2$ is

$$
\begin{aligned}
& C \xrightarrow{\phi_{K_{C}}} \mathbb{P}\left(H^{0}\left(C, K_{C}\right)\right) \cong \mathbb{P}^{g-1} \\
& x \longmapsto\left[s_{0}(x): \cdots: s_{g-1}(x)\right]
\end{aligned}
$$

where $s_{0}, \ldots, s_{g-1}$ form a basis for $H^{0}\left(C, K_{C}\right) \cong \mathbb{C}^{g}$.
$\phi_{K_{C}}$ is undefined at each $x \in C$ with $s_{0}(x)=\cdots=s_{g-1}(x)=0$. Such points of $C$ are called base points of $\phi_{K_{C}}$.

$$
\text { Note: } \quad g \leq 0 \Longrightarrow \operatorname{deg}\left(K_{C}\right)=2(g-1)<0 \quad \Longrightarrow \quad \text { no canonical map. }
$$

## Canonical images of curves of genus $\geq 1$

FACT: For $C$ with $g(C)=h^{0}\left(C, K_{C}\right) \geq 1, \phi_{K_{C}}$ is in fact base-point-free and is therefore a holomorphic map $C \longrightarrow \mathbb{P}\left(H^{0}\left(C, K_{C}\right)\right) \cong \mathbb{C}^{g-1}$.

For $C$ with $g(C) \geq 1$,
$\operatorname{kod}(C):=$ dimension of image of canonical map $\phi_{K_{C}}$.

| $g(C)$ | $\operatorname{kod}(C)$ | $\phi_{K_{C}}$ | type |
| :---: | :---: | :---: | :---: |
| 0 | $-\infty$ |  | $C \cong \mathbb{P}^{1} \quad$ Riemann sphere |
|  |  |  |  |
| 1 | 0 | constant | $C \cong \mathbb{C} / \Lambda \quad$ complex torus |
| 2 | 1 | $C \xrightarrow{2: 1} \mathbb{P}^{1}$ | hyperelliptic ${ }^{\text {a }}$ |
| $\geq 3$ | 1 | $\begin{gathered} C \xrightarrow{2: 1} \mathbb{P}^{g-1} \\ C \hookrightarrow \mathbb{P}^{g-1} \end{gathered}$ | hyperelliptic projective curve of degree $2 g-2$ |

## Discrete invariants generalizing genera of curves

For a curve $C$,

$$
\begin{gathered}
g(C):=\text { : topological genus }=\text { analytic genus }:=h^{1,0}(C) \\
h^{1,0}(C)=h^{n, 0}(C)=h^{0}\left(C, \Omega^{n}(C)\right)=h^{0}\left(C, K_{C}\right), \quad n:=\operatorname{dim}_{\mathbb{C}}(C)=1
\end{gathered}
$$

For a complex manifold $M$ of dimension $n$,

$$
\begin{aligned}
\text { irregularity, } q & :=h^{1}\left(M, \mathcal{O}_{M}\right)=h^{0,1}(M) \stackrel{\text { Kähler }}{=} h^{1,0}(M) \\
\text { geometric genus, } p_{g} & :=h^{n, 0}(M)=h^{0}\left(M, \Omega_{M}^{n}\right)=h^{0}\left(M, K_{M}\right) \\
\text { Hodge Numbers, } h^{p, 0}(M) & :=h^{0}\left(M, \Omega_{M}^{p}\right), \quad 0 \leq p \leq n \\
m^{\text {th }} \text { plurigenus, } P_{m}(M) & :=h^{0}\left(M, K_{M}^{m}\right), \quad m=1,2,3, \ldots
\end{aligned}
$$

However, these "biholomorphic" invariants are in fact only "birational" (or bimeromorphic) invariants due to the operation of blow-up of points.

## Blow-up of $\mathbb{C}^{2}$ at the origin

$$
\begin{array}{cll}
\mathrm{Bl}_{\mathbf{0}}\left(\mathbb{C}^{2}\right) & := & \left\{((x, y),[u: v]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x v=y u\right\} \\
\pi \downarrow & & \downarrow \\
\mathbb{C}^{2} & \in & (x, y)
\end{array}
$$

- $((x, y),[u: v]) \in \mathrm{Bl}_{\mathbf{0}}\left(\mathbb{C}^{2}\right) \Longleftrightarrow(x, y) \in \mathbb{C}^{2}$ lies in the 1-dimensional subspace $[u: v] \in \mathbb{P}^{1}$.
- $\pi^{-1}(x)=(x,[x])$, for any $x \neq 0$.
- $\pi^{-1}(\mathbf{0})=\mathbf{0} \times \mathbb{P}^{1} \cong \mathbb{P}^{1}=$ space of tangential directions through $\mathbf{0} \in \mathbb{C}^{2}$.
- $\mathrm{Bl}_{\mathbf{0}}\left(\mathbb{C}^{2}\right)-\pi^{-1}(\mathbf{0}) \xrightarrow{\pi} \mathbb{C}^{2}-\mathbf{0}$ is a biholomorphism.
- Both $\mathrm{Bl}_{\mathbf{0}}\left(\mathbb{C}^{2}\right)$ and $\mathbb{C}^{2}$ smooth, i.e. blow-ups and blow-downs of points preserve smoothness.
- Blow-up increases the second Betti number by 1. Blow-down decreases it by 1 .


## Hartogs' Extension Theorem and Birational Invariants

DEFINITION A birational (or bimeromorphic) map $X \rightarrow Y$ between two complex manifolds is a biholomorphic map $X \backslash S \longrightarrow Y \backslash T$, where $S, T$ are proper subvarieties of $X$ and $Y$ respectively.

In the complex algebraic geometry setting, the various "biholomorphic invariants" (defined via differential forms) introduced above are in fact "birational invariants":

1. Hartog's Extension Theorem: meromorphic ( $\mathbb{C}$-valued) functions whose loci of non-holomorphicity has codimension $\geq 2$ extend to holomorphic functions.
2. The existence of birational but non-biholomorphic maps in dimensions $\geq 2$. Prototypical examples: blow-up of points.
3. The locus of indeterminacy of a birational map between algebraic manifolds has codimension at least two.

Consequently, pull-backs of holomorphic forms of algebraic manifolds under birational maps have loci of indeterminacy of codimension $\geq 2$; hence such pull-backs always extend to holomorphic forms by Hartogs' Theorem.

## PROBLEM: Each birational equivalence class of surfaces contains infinitely many smooth surfaces.

Q: Is there a distinguished representative in a given birational class?

## Intersection numbers of two curves on a surface

Let $L=[D]$ be a holomorphic line bundle defined by the divsior $D$ on a compact complex surface $X$. Let $C \subset X$ be a curve embedded in $X$. Then, the intersection number of $C$ and $D$ is definedy by

$$
D \cdot C:=\int_{C} c_{1}\left(\left.[D]\right|_{C}\right)=\int_{C} c_{1}\left(\left.L\right|_{C}\right)=\operatorname{deg}\left(\left.L\right|_{C}\right)=\left\{\begin{array}{l}
\text { sum of orders of zeros and poles of a } \\
\text { generic meromorphic section of }\left.L\right|_{C}
\end{array}\right\}
$$

In particular, $D \cdot C<0 \Longrightarrow$ the restriction of $L=[D]$ to $C$ has no nonzero sections.

$$
\begin{array}{cc}
\text { FACT: } & \text { The exceptional locus } E:=\pi^{-1}(\mathbf{0}) \cong \mathbb{P}^{1} \text { is a copy of } \mathbb{P}^{1} \\
\text { embedded in the surface } X:=\operatorname{Blo}_{\mathbf{0}}\left(\mathbb{C}^{2}\right) \text { with self-intersection }-1 ; \\
\text { equivalently, } & {\left.[E]\right|_{E}=N_{E / X} \text { is equivalent to the tautological bundle over } \mathbb{P}^{1} ;} \\
\text { equivalently, } & \operatorname{deg}\left(\left.[E]\right|_{E}\right)=-1 .
\end{array}
$$

Consequently, $N_{E / X}$ has no holomorphic sections and $E$ cannot be holomorphically deformed in $X$.

## Birational maps of complex surfaces \& minimal surfaces

## FACT:

Every birational map between two smooth compact complex surfaces is a finite succession of blow-ups and blow-downs of points

RECALL: The exceptional locus of a blow-up is a copy of $\mathbb{P}^{1}$ with self-intersection -1.
DEFINITION: An copy of $\mathbb{P}^{1}$ in a surface with self-intersection -1 is a called a ( -1 )-curve.

## Castelnuovo-Enriques Blow-down Criterion:

An embedded curve $C$ in a surface $X$ can be blown down to a point
$\Longleftrightarrow \quad C$ is a $(-1)$-curve
$\Longleftrightarrow \quad C \cdot C<0$ and $K_{X} \cdot C<0$.

A way to find a distinguished representative within a birational class: Given a smooth surface, locate all of its $(-1)$-curve(s), blow them down one at a time, until we reach smooth surface with no $(-1)$-curves. This process must terminate in finitely many steps because each blow-down lowers second Betti number by 1.

DEFINITION: A compact complex surface is said to be minimal if it contains no $(-1)$-curves.

## Enriques-Kodaira Classification of (minimal) complex surfaces

| class | $\operatorname{kod}(X)$ | $a(X)$ | $p_{g}$ | $q$ | $K_{X}^{?}=0$ | $b_{2}$ | $c_{1}^{2}$ | $c_{2}=e$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rational |  | 2 | 0 | 0 |  | 1,2 | 8,9 | 3,4 |
| ruled $_{-}(g \geq 1)$ | $-\infty$ | 2 | 0 | $g$ |  | 2 | $8(1-g)$ | $4(1-g)$ |
| VII $_{0}$ |  | 0,1 | 0 | 1 |  |  | $-b_{2}$ | $b_{2}$ |
| $K 3$ |  | $0,1,2$ | 1 | 0 | 1 | 22 | 0 | 24 |
| Enriques |  | 2 | 0 | 0 | 2 | 10 | 0 | 12 |
| 2 -tori | 0 | $0,1,2$ | 1 | 2 | 1 | 6 | 0 | 0 |
| hyperelliptic |  | 2 | 0 | 1 | $2,3,4,6$ | 2 | 0 | 0 |
| primary Kodaira |  | 1 | 1 | 2 | 1 | 4 | 0 | 0 |
| $2^{\text {nd }}$-ary Kodaira |  | 1 | 0 | 1 | $2,3,4,6$ | 0 | 0 | 0 |
| properly elliptic | 1 | 1,2 |  |  |  |  | 0 | $\geq 0$ |
| general type | 2 | 2 | $>0$ | $b_{1} / 2$ |  | $>0$ |  | $>0$ |

$a(X):=\operatorname{trdeg}_{\mathbb{C}}(\mathbb{C}(X))$, the transcendence degree of the field $\mathbb{C}(X)$ of rational functions of $X . a(X)$ is called the algebraic dimension of $X$. The following inequalities hold: $\operatorname{kod}(X) \leq a(X) \leq \operatorname{dim}_{\mathbb{C}}(X)$. Furthermore, $a(X)=1 \Longrightarrow X$ is an elliptic surface.

[^0]
## The Kodaira Dimension of a Compact Complex Manifold

Let $L$ be a line bundle on a compact connected complex manifold $M$. Its litaka-Kodaira dimension is
$\kappa(M, L):= \begin{cases}-\infty, & \text { if } h^{0}(M, m L)=0, \forall m \geq 1, \\ \sup \left\{\operatorname{dim}_{\mathbb{C}} \phi_{m L}(M) \left\lvert\, \begin{array}{c}m \in \mathbb{N} \\ h^{0}(M, m L)>0\end{array}\right.\right\}, & \text { otherwise }\end{cases}$

FACT: $\kappa(M, L) \in\{-\infty, 0,1,2, \ldots, a(M)\}$, where $a(M):=\operatorname{trdeg}_{\mathbb{C}}(\mathbb{C}(M))$ is the algebraic dimension of $M$, and $0 \leq a(M) \leq \operatorname{dim}_{\mathbb{C}}(M)$.

FACT: If $\kappa:=\kappa(M, L) \geq 0$, then there exists a positive integer $m_{0}$ and a constant $C>0$ such that

$$
\frac{1}{C} m^{\kappa} \leq h^{0}\left(M, L^{\otimes m}\right) \leq C m^{\kappa}
$$

DEFINITION: The Kodaira dimension $\operatorname{kod}(M):=\kappa\left(M, K_{M}\right)$.
$\operatorname{kod}(M)$ is the maximal dimension of the images of the pluricanonical maps $\phi_{m K_{M}}$ of $M$.

## More on examples of complex surfaces

- Hypersurfaces $X$ in $\mathbb{P}^{3}$ of degree $d$. The adjunction formula ${ }^{\text {a }}$ states
$K_{X}=\left.\left(K_{\mathbb{P}^{3}}+[X]\right)\right|_{X}=\mathcal{O}_{X}(d-4)$, since $K_{\mathbb{P}^{3}}=\mathcal{O}(-4)$.
- $d>4 \Longrightarrow K_{X}$ is ample, $\operatorname{kod}(X)=2$. $X$ is of general type.
- $d=4 \Longrightarrow K_{X}$ is trivial, $\operatorname{kod}(X)=0$. Simply connected complex manifolds with trivial canonical bundles are called Calabi-Yau manifolds. 2-dimensional Calabi-Yau manifolds are also called $K 3$ surfaces.
- $d<4 \Longrightarrow-K_{X}$ is ample, $\operatorname{kod}(X)=-\infty$. Complex manifolds with ample anticanonical bundls are called Fano manifolds. 2-dimensional Fano manifolds are also called del Pezzo surfaces. The only minimal del Pezzo surfaces are $\mathbb{P}^{2}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1}$. All other del Pezzo surfaces are "successive blow-ups" of $\mathbb{P}^{2}$ at $n \in\{1,2, \ldots, 8\}$ "general" points, hence are not minimal.
- The minimal rational surfaces are $\mathbb{P}^{2}$ and the Hirzebruch surfaces

$$
F_{n}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right), \text { with } n=0,2,3, \ldots
$$

$F_{1}=$ blow-up of $\mathbb{P}^{2}$ at one point $=\mathbb{P}^{2} \# \overline{\mathbb{P}^{2}}$, and is NOT mimimal. $F_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1} . \mathrm{A}$ Hirzebruch surface is a ruled surface ( $\mathbb{P}^{1}$-bundle) $X$ over $\mathbb{P}^{1}$. Grothendieck splitting ${ }^{b}$ implies

$$
X \cong \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b)\right) \cong \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right)=: F_{n}, \text { for some } n \geq 0
$$

$$
{ }^{a_{\mathbb{P}^{3}}}=\bigwedge^{n}\left(\Omega^{1} \mathbb{P}^{3}\right)^{*}=\wedge^{n-1}\left(\Omega^{1} X\right)^{*} \otimes N_{X / \mathbb{P}^{3}}^{*}=\left.K_{X} \otimes[-X]\right|_{X}
$$

${ }^{b}$ Vector bundles over $\mathbb{P}^{1}$ are direct sums of line bundles.

## Minimal models in higher dimensions \& nefness of line bundles

Importance of rational curves and nefness of canonical bundle
DEFINITION: A line bundle $L$ on a complex projective manifold $M$ is said to be nef if $L \cdot C \geq 0$ for each irreducible curve $C$ in $M$.

- RECALL (Castelnuovo Criterion): A curve $C \subset X$ if a ( -1 )-curve if and only if $C \cdot C<0$ and $K_{X} \cdot C<0$. Hence, $K_{X}$ nef $\Longrightarrow X$ minimal (i.e. no ( -1 )-curves).
- FACT: For a smooth projective surface $X, K_{X}$ not nef $\Longrightarrow$ either $X \cong \mathbb{P}^{2}$, or $X$ is ruled ( $\mathbb{P}^{1}$-bundle over a curve), or $X$ is NOT minimal (i.e. it contains ( -1 )-curves).
- Thus, if $\operatorname{kod}(X) \geq 0$, then $K_{X}$ is nef if and only if $X$ is minimal (i.e. no ( -1 )-curves).
- FACT: If the canonical bundle $K_{M}$ of a compact complex manifold $M$ is not nef, then, there exists a rational curve $C$ (i.e. $C$ is birationally equivalently to $\mathbb{P}^{1}$ ) which is contracted by $\pi$ to a point and satisfies $K_{M} \cdot C<0$. [Contraction Theorem]

DEFINITION: A complex projective manifold is said to be minimal if its canonical bundle is nef.

DEFINITION: A line bundle on a compact complex manifold is said to be nef if for every $\varepsilon>0$, there is a smooth hermitian metric $h_{\varepsilon}$ on $L$ such that $\mathbf{i} \Theta_{h_{\varepsilon}(L)} \geq-\varepsilon \omega$, where $\omega$ is any fixed Hermitian metric on $M$.

## Differential-geometric Intuition of Nefness

FACT: For a Kähler metric on a complex manifold $M$, its Ricci curvature (of its underlying Riemannian metric) is the induced curvature on the canonical bundle

$$
K_{M}:=\bigwedge^{n}\left(T^{1,0} M\right)^{*} .
$$

Note:

$$
c_{1}(M):=c_{1}\left(T^{1,0} M\right)=-c_{1}\left(\left(T^{1,0} M\right)^{*}\right)=-c_{1}\left(\bigwedge^{n}\left(T^{1,0} M\right)^{*}\right)=-c_{1}\left(K_{M}\right) .
$$

DEFINITION: Intersection of a line bundle $L$ on a compact Kähler manifold $(M, \omega)$ with a curve $C \subset M$ :

$$
L \cdot C:=\int_{C} c_{1}\left(\left.L\right|_{C}\right)=\operatorname{deg}\left(\left.L\right|_{C}\right)=\left\{\begin{array}{l}
\text { sum of orders of zeros and poles of a } \\
\text { generic meromorphic section of }\left.L\right|_{C}
\end{array}\right\}
$$

In particular,

$$
K_{M} \cdot C:=\int_{C} c_{1}\left(\left.K_{M}\right|_{C}\right)=\operatorname{deg}\left(\left.K_{M}\right|_{C}\right)=\int_{C}\left\{\begin{array}{l}
\text { class of curvature of } \\
\text { any metric on } K_{M}
\end{array}\right\}=\int_{C} \operatorname{Ric}(\omega)
$$

So, conditions such as $K_{M} \cdot C \geq 0, K_{M} \cdot C \leq 0$, etc. are positivity/negativity conditions on "average Ricci curvature of $(M, \omega)$ restricted on curves".

## Difficulties in Minimal Model Program in higher dimensions

PROBLEM: The image of a smooth variety under contraction of a rational curve may be singular.
Fix: Allow minimal models to be (mildly) singular.

PROBLEM: $\quad$ Singularities arising from "small" contractions (codim(Exc) $\geq 2$ ) render intersection numbers of canonical divisor with curves undefined. (Canonical divisor is not $\mathbb{Q}$-Cartier.)
Conjecture: "Flips" — codim-two surgeries; "repair" non- $\mathbb{Q}$-Cartier canonical divisors.
PROBLEM: Existence and finite termination of flips?
Partial fix: Existence up to dimension 5. Finite termination up to dimension 3.

PROBLEM: Uniqueness of minimal models?
Partial fix: Uniqueness fails. But, in dimension 3, birationally equivalent minimal varieties are related by known codim-two surgeries called "flops."

PROBLEM: Higher-dim'I birationally equiv. minimal varieties still related by flops?
PROBLEM: Existence, finite termination of flops? Number of birational models $<\infty$ ?

## From minimal model to canonical model

## Abundance Conjecture (from MMP)

If $K_{M}$ is nef, then $K_{M}$ is semiample, i.e. some pluricanonical map $\phi_{m K_{M}}: M \rightarrow \mathbb{P}^{N}$ is in fact holomorphic.

FACT: If $M$ is of general type and $K_{M}$ is nef, then $K_{M}$ is semiample.
FACT: The Abundance Conjecture is true for 3-folds.
If $R(M):=\underset{m \geq 0}{\bigoplus} H^{0}\left(M, m K_{M}\right)$ is finitely generated, then the images of the pluricanonical maps $\phi_{m K_{M}}$, for $m \gg 0$, are all isomorphic to:

$$
\operatorname{Proj}(R(M))=: M_{\text {can }} .
$$

Going from minimal model to canonical model:

- Gain: uniqueness for each birational class.
- Potential Gain: ampleness of $K_{M_{\text {can }}}$. (True for minimal $X$ of general type.)
- Losses:
- even worse singularities than the minimal models,
- $0 \leq \operatorname{dim}\left(M_{\text {can }}\right)=\operatorname{kod}(M) \leq \operatorname{dim}(M)$,
- existence - requires finite generation of $R(M)$.


## Bigness of Line Bundles

Loosely speaking, "bigness" of a line bundle is "birational ampleness."
DEFINITION: A line bundle $L$ on a compact complex manifold $M$ is said to be big if $\kappa(M, L)=\operatorname{dim}_{\mathbb{C}}(M)$.

- FACT: Bigness of $L$ (and nonsingularity of $M$ ) $\Longrightarrow$ for some $m>0$, the rational map $\phi_{m L}: M \rightarrow \mathbb{P}\left(H^{0}(M, m L)\right)$ is surjective and birational.
- DEFINITION: A compact complex manifold $M$ is said to be of general type if any one of the following equivalent conditions holds: $\operatorname{kod}(M)=\operatorname{dim}_{\mathbb{C}}(M) \Longleftrightarrow K_{M}$ is big $\Longleftrightarrow$ for some large enough $m>0$, the pluricanonical map $\phi_{m K_{M}}: M \rightarrow \mathbb{P}^{N}$ is a birational holomorphic map onto its image.
- The only thing you need to know (How many of you are in outer space by now?): For a compact complex manifold $M$, its canonical bundle $K_{M}$ being "nef and big" means
- $M$ is minimal and of general type,
- hence, its canonical model $M_{\text {can }}$ exists, with $K_{M_{\text {can }}}$ ample,
- $M_{\text {can }}$ is a birational model of $M$,
- $M_{\text {can }}$ can be thought of as the image of $\phi_{m K_{M}}$, for $m \gg 0$.


## Canonical metrics, birational geometry \& MMP

- FAMOUS FACT: A compact Kähler manifold $M$ with $c_{1}(M) \leq 0$ ( $K_{M} \geq 0$ ) admits a unique Kähler-Einstein metric. [Yau: continuity method], [Aubin, ?? method], [Cao: Kähler-Ricci flow].
- Recall: $K_{M}$ nef and big $\Longrightarrow M_{\text {can }}$ exists, with $K_{M_{\text {can }}}$ ample.
- One might expect: The canonical model $M_{\text {can }}$ of a projective manifold $M$ may admit a (singular) Kähler-Einstein metric.


## The (Fields-medal-winning) Calabi-Yau Theorem

On a compact Kähler manifold, the prescribed Ricci curvature problem has a unique solution
in every Kähler class. More precisely:
Let $M$ be a compact Kähler manifold. Then, given

- any form $\Omega \in-\mathbf{i} 2 \pi c_{1}(M)$,
- any Kähler class $[\omega] \in H^{2}(M, \mathbb{R}) \cap H^{1,1}(M, \mathbb{C})$,
there exists a unique Kähler form $\omega \in[\omega]$ such that $\operatorname{Ric}(\omega)=\Omega$.


## Recent Results

Canonical metrics on varieties of general type via Kähler-Ricci flow
[Tian-Zhang, '06]
If $X$ is a minimal complex surface of general type, then the global solution of the Kähler-Ricci flow converges to a positive current $\widetilde{\omega}_{\infty}$ which descends to the Kähler-Einstein orbifold metric on its canonical model. In particular, $\widetilde{\omega}_{\infty}$ is smooth outside finitely many rational curves and has local continuous potential.
[Casini-La Nave, Mar '06]
Let $M$ be a projective manifold of general type with canonical divisor $K_{M}$ not nef. Then,
〇 $\exists$ some curve $C \subset M$ with $K_{M} \cdot C<0$ and a holomorphic map $c: M \longrightarrow M^{\prime}\left(M^{\prime}\right.$ possibly singular) which contracts $C$.

- the Kähler-Ricci flow $g(t)$ on $M$, with a certain initial metric depending on $K_{M}$ and $c$, develops singularity in finite time, say $T$;
- the singular locus of $g(T)$ is contained in a proper subvariety of $M$;
- If $M^{\prime}$ is furthermore smooth, then $g(T)$ descends to a smooth metric on $M^{\prime}$.


## Recent Results

Canonical metrics on surfaces of intermediate Kodaira dimension via Kähler-Ricci flow

- A properly $(\operatorname{kod}(S)=1)$ elliptic surface $S \xrightarrow{f} \Sigma$ is a fibration over a curve $\Sigma$ with generic fiber being a smooth elliptic curve. It turns out that the base curve $\Sigma$ is the canonical model of $S$.
- [Tian-Song, Mar '06] The Kähler-Ricci flow on a minimal properly elliptic surface $S \xrightarrow{f} S_{\text {can }}$ has global solution $\omega(t, \cdot)$ which converges as currents to $f^{*} \omega_{\infty}$, where $\omega_{\infty}$ is a positive current on $S_{\text {can }}$, smooth on the smooth locus of $S_{\text {can }}$, and is a "generalized" Kähler-Einstein metric in the following sense:

$$
\operatorname{Ric}\left(\omega_{\infty}\right)=-\omega_{\infty}+\omega_{W P}+\left\{\begin{array}{l}
\text { further correction terms due to } \\
\text { presence of singular fibers of } f
\end{array}\right\}
$$

where $\omega_{W P}$ is the induced Weil-Petersson metric on $S_{\text {can }}$.

## THE END THANK YOU!


[^0]:    - a ruled surface is a $\mathbb{P}^{1}$-bundle over a curve of genus $g \geq 0$.

