A Crash Course on Compact Complex Surfaces

Kenneth Chu chu@math.utexas.edu

Department of Mathematics University of Texas at Austin April 24, 2007

Abstract

- "Analytic invariants" of complex manifolds that the generalizations of the genus of curves, and their birationally invariant nature.
- Blow-up of a surface at a point.
- Birational classification of complex surfaces via minimal models. Enriques-Kodaira classification.
- Canonical models.
- **D** Calabi-Yau manifolds and K3 surfaces.
- Fano manifolds and del Pezzo surfaces.

Examples of Compact Complex Surfaces

- P², ℙ¹ × ℙ¹ (≅ smooth quadric surface in ℙ³), smooth hypersurfaces in ℙ³, two-dimensional submanifolds of ℙⁿ, Cartesian products of two compact Riemann surfaces.
 - 2. *fake projective planes* := compact complex surfaces with $b_1 = 0$, $b_2 = 1$ not isomorphic to \mathbb{P}^2 . Such a surface is projective algebraic and it is the quotient of the open unit ball in \mathbb{C}^2 by a discrete subgroup of PU(2, 1). The first example (Mumford surface) was constructed Mumford using *p*-adic tecnhniques. Recently, all possible (17 known finite classes plus four possible candidates and no more) fake projective planes have been enumerated by Gopal Prasad and Sai-Kee Yeung. See abstract for colloquium on March 26, 2007.
 - 3. Ruled surface $:= \mathbb{P}^1$ -bundle over a compact Riemann surface.
 - Can be shown: All ruled surfaces are projectivizations of rank-two vector bundles over compact Riemann surfaces.
 - Itizebruch surfaces: $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n))$, n = 0, 1, 2, ...
 - 4. *Elliptic surface* := total space of a holomorphic fibration over a compact Riemann surface with generic fiber being a smooth elliptic curve.
 - 5. 2-dimensional complex tori: C^2/Λ , where $\Lambda \cong \mathbb{Z}^4$ is a discrete lattice in \mathbb{C}^2 .
 - 6. Hopf surface := compact complex surface with universal cover $\mathbb{C}^2 \{0\}$. For example, $(\mathbb{C}^2 \{0\})/\mathbb{Z}$, where the action of \mathbb{Z} on \mathbb{C}^2 is generated by $\mathbb{C}^2 \longrightarrow \mathbb{C}^2 : z \mapsto 2z$. (The Hopf surface is compact and non-Kähler.)

In the Beginning ...

Goddess Said Let there be ... CURVES.

I am not joking; ask the string theorists.

Classification of smooth compact complex curves by genus

analytic/topological genus $g(C) = h^0(C, \Omega^1_C) = h^0(C, K_C)$

degree of canonical bundle

$$\deg(K_C) = 2g(C) - 2$$

$g(C) = h^0(K_C)$	\widetilde{C}	curvature	$\deg(K_C)$	$\mathop{\rm kod}(C)$
0	\mathbb{P}^1	positive	< 0	$-\infty$
1	\mathbb{C}	flat	= 0	0
≥ 2	\mathbb{CH}^1	negative	> 0	1

Canonical maps for curves of genus ≥ 2

For a a line bundle L on a smooth compact complex curve (Riemann surface) C,

$$\deg(L) = \int_C c_1(L) = \begin{cases} \text{sum of orders of zeros and poles of} \\ \text{a generic meromorphic section of } L \end{cases}$$

 $h^0(C,L) > 0 \implies \deg(L) \ge 0$; conversely $h^0(C,L) = 0 \iff \deg(L) < 0$

The canonical map ϕ_{K_C} for a curve C of genus $g \ge 2$ is

$$C \xrightarrow{\phi_{K_C}} \mathbb{P}(H^0(C, K_C)) \cong \mathbb{P}^{g-1}$$

 $x \longmapsto [s_0(x) : \dots : s_{g-1}(x)]$

where s_0, \ldots, s_{g-1} form a basis for $H^0(C, K_C) \cong \mathbb{C}^g$.

 ϕ_{K_C} is undefined at each $x \in C$ with $s_0(x) = \cdots = s_{g-1}(x) = 0$. Such points of C are called base points of ϕ_{K_C} .

Note:
$$g \leq 0 \implies \deg(K_C) = 2(g-1) < 0 \implies$$
 no canonical map.

Canonical images of curves of genus ≥ 1

FACT: For *C* with $g(C) = h^0(C, K_C) \ge 1$, ϕ_{K_C} is in fact base-point-free and is therefore a holomorphic map $C \longrightarrow \mathbb{P}(H^0(C, K_C)) \cong \mathbb{C}^{g-1}$.

For C with $g(C) \ge 1$,

 $kod(C) := dimension of image of canonical map <math>\phi_{K_C}$.

g(C)	kod(C)	ϕ_{K_C}	type			
0	$-\infty$		$C\cong \mathbb{P}^1$ Riemann sphere			
1	0	constant	$C\cong \mathbb{C}/\Lambda$ complex torus			
2	1	$C \xrightarrow{2:1} \mathbb{P}^1$	hyperelliptic ^a			
≥ 3	1	$C \xrightarrow{2:1} \mathbb{P}^{g-1}$	hyperelliptic			
		$C \hookrightarrow \mathbb{P}^{g-1}$	projective curve of degree $2g-2$			

 a hyperelliptic curve $\ := \ (2:1)$ -branched cover of \mathbb{P}^{1}

Discrete invariants generalizing genera of curves

For a curve C, $g(C) :=: \text{topological genus} = \text{ analytic genus} := h^{1,0}(C)$ $h^{1,0}(C) = h^{n,0}(C) = h^0(C, \Omega^n(C)) = h^0(C, K_C), \quad n := \dim_{\mathbb{C}}(C) = 1.$

For a complex manifold M of dimension n,

irregularity, $q := h^1(M, \mathcal{O}_M) = h^{0,1}(M) \stackrel{\text{Kahler}}{=} h^{1,0}(M)$ geometric genus, $p_g := h^{n,0}(M) = h^0(M, \Omega_M^n) = h^0(M, K_M)$ Hodge Numbers, $h^{p,0}(M) := h^0(M, \Omega_M^p), \ 0 \le p \le n$ m^{th} plurigenus, $P_m(M) := h^0(M, K_M^m), \ m = 1, 2, 3, \ldots$

However, these "biholomorphic" invariants are in fact only "birational" (or bimeromorphic) invariants due to the operation of blow-up of points.

Blow-up of \mathbb{C}^2 at the origin

$$\begin{array}{rcl} \mathsf{Bl}_{\mathbf{0}}(\mathbb{C}^2) & := & \left\{ \ ((x,y), [u:v] \) \in \mathbb{C}^2 \times \mathbb{P}^1 \ | \ xv = yu \ \right\} \\ & \pi \downarrow & \downarrow \\ & \mathbb{C}^2 & \in & (x,y) \end{array}$$

 $\label{eq:alpha} \begin{tabular}{ll} $((x,y),[u:v])\in {\rm Bl}_{\mathbf 0}(\mathbb C^2)$ & \Longleftrightarrow $(x,y)\in \mathbb C^2$ lies in the 1-dimensional subspace $[u:v]\in \mathbb P^1$.} \end{tabular}$

•
$$\pi^{-1}(\mathbf{x}) = (\mathbf{x}, [\mathbf{x}]), \text{ for any } \mathbf{x} \neq \mathbf{0}.$$

- $Bl_0(\mathbb{C}^2) \pi^{-1}(\mathbf{0}) \xrightarrow{\pi} \mathbb{C}^2 \mathbf{0}$ is a biholomorphism.
- Both $Bl_0(\mathbb{C}^2)$ and \mathbb{C}^2 smooth, i.e. blow-ups and blow-downs of points preserve smoothness.
- Blow-up increases the second Betti number by 1. Blow-down decreases it by 1.

Hartogs' Extension Theorem and Birational Invariants

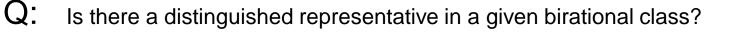
DEFINITION A *birational* (or *bimeromorphic*) map $X \rightarrow Y$ between two complex manifolds is a biholomorphic map $X \setminus S \longrightarrow Y \setminus T$, where S, T are proper subvarieties of X and Y respectively.

In the complex algebraic geometry setting, the various "biholomorphic invariants" (defined via differential forms) introduced above are in fact "birational invariants":

- 1. Hartog's Extension Theorem: meromorphic (\mathbb{C} -valued) functions whose loci of non-holomorphicity has codimension ≥ 2 extend to holomorphic functions.
- 2. The existence of birational but non-biholomorphic maps in dimensions ≥ 2 . Prototypical examples: blow-up of points.
- 3. The locus of indeterminacy of a birational map between algebraic manifolds has codimension at least two.

Consequently, pull-backs of holomorphic forms of algebraic manifolds under birational maps have loci of indeterminacy of codimension ≥ 2 ; hence such pull-backs always extend to holomorphic forms by Hartogs' Theorem.

Each birational equivalence class of surfaces contains infinitely many smooth surfaces.



Intersection numbers of two curves on a surface

Let L = [D] be a holomorphic line bundle defined by the divisor D on a compact complex surface X. Let $C \subset X$ be a curve embedded in X. Then, the intersection number of C and D is defined by

$$D \cdot C := \int_C c_1([D]|_C) = \int_C c_1(L|_C) = \deg(L|_C) = \begin{cases} \text{sum of orders of zeros and poles of a} \\ \text{generic meromorphic section of } L|_C \end{cases}$$

In particular, $D \cdot C < 0 \implies$ the restriction of L = [D] to C has no nonzero sections.

FACT:The exceptional locus $E := \pi^{-1}(\mathbf{0}) \cong \mathbb{P}^1$ is a copy of \mathbb{P}^1
embedded in the surface $X := Bl_{\mathbf{0}}(\mathbb{C}^2)$ with self-intersection -1;
equivalently, $[E]|_E = N_{E/X}$ is equivalent to the tautological bundle over \mathbb{P}^1 ;
 $deg([E]|_E) = -1.$

Consequently, $N_{E/X}$ has no holomorphic sections and E cannot be holomorphically deformed in X.

Birational maps of complex surfaces & minimal surfaces

FACT: Every birational map between two smooth compact complex surfaces is a finite succession of blow-ups and blow-downs of points

RECALL: The exceptional locus of a blow-up is a copy of \mathbb{P}^1 with self-intersection -1.

DEFINITION: An copy of \mathbb{P}^1 in a surface with self-intersection -1 is a called a (-1)-curve.

Castelnuovo-Enriques Blow-down Criterion:

An embedded curve C in a surface X can be blown down to a point

$$\iff C \text{ is a } (-1)\text{-curve}$$

 $\iff C \cdot C < 0 \text{ and } K_X \cdot C < 0.$

A way to find a distinguished representative within a birational class: Given a smooth surface, locate all of its (-1)-curve(s), blow them down one at a time, until we reach smooth surface with no (-1)-curves. This process must terminate in finitely many steps because each blow-down lowers second Betti number by 1.

DEFINITION: A compact complex surface is said to be *minimal* if it contains no (-1)-curves.

Enriques-Kodaira Classification of (minimal) complex surfaces

class	$\operatorname{kod}(X)$	a(X)	p_g	q	$K_X^? = 0$	b_2	c_{1}^{2}	$c_2 = e$
rational		2	0	0		1, 2	8,9	3,4
ruled ^a ($g \ge 1$)	$-\infty$	2	0	g		2	8(1-g)	4(1-g)
VII ₀		0,1	0	1			$-b_2$	b_2
K3		0, 1, 2	1	0	1	22	0	24
Enriques		2	0	0	2	10	0	12
2-tori	0	0,1,2	1	2	1	6	0	0
hyperelliptic		2	0	1	2,3,4,6	2	0	0
primary Kodaira		1	1	2	1	4	0	0
2 nd -ary Kodaira		1	0	1	2, 3, 4, 6	0	0	0
properly elliptic	1	1, 2					0	≥ 0
general type	2	2	> 0	$b_1/2$		> 0		> 0

 $a(X) := \operatorname{trdeg}_{\mathbb{C}}(\mathbb{C}(X))$, the transcendence degree of the field $\mathbb{C}(X)$ of rational functions of X. a(X) is called the algebraic dimension of X. The following inequalities hold: $\operatorname{kod}(X) \leq a(X) \leq \dim_{\mathbb{C}}(X)$. Furthermore, $a(X) = 1 \implies X$ is an elliptic surface.

^aA *ruled surface* is a \mathbb{P}^1 -bundle over a curve of genus $g \ge 0$.

The Kodaira Dimension of a Compact Complex Manifold

Let *L* be a line bundle on a compact connected complex manifold *M*. Its *litaka-Kodaira dimension* is

$$\kappa(M,L) := \left\{ \begin{array}{ll} -\infty, & \text{if } h^0(M,mL) = 0, \ \forall m \ge 1, \\ \\ \sup \left\{ \dim_{\mathbb{C}} \phi_{mL}(M) \left| \begin{array}{c} m \in \mathbb{N} \\ h^0(M,mL) > 0 \end{array} \right\}, & \text{otherwise} \end{array} \right. \right. \right\}$$

FACT: $\kappa(M,L) \in \{-\infty, 0, 1, 2, \dots, a(M)\}$, where $a(M) := \operatorname{trdeg}_{\mathbb{C}}(\mathbb{C}(M))$ is the algebraic dimension of M, and $0 \le a(M) \le \dim_{\mathbb{C}}(M)$.

FACT: If $\kappa := \kappa(M, L) \ge 0$, then there exists a positive integer m_0 and a constant C > 0such that $\frac{1}{C} m^{\kappa} \le h^0(M, L^{\otimes m}) \le C m^{\kappa}.$

DEFINITION: The Kodaira dimension $\operatorname{kod}(M) := \kappa(M, K_M)$. $\operatorname{kod}(M)$ is the maximal dimension of the images of the pluricanonical maps ϕ_{mK_M} of M.

More on examples of complex surfaces

Hypersurfaces X in \mathbb{P}^3 of degree d. The adjunction formula^a states $K_X = (K_{\mathbb{P}^3} + [X])|_X = \mathcal{O}_X(d-4)$, since $K_{\mathbb{P}^3} = \mathcal{O}(-4)$.

● $d > 4 \implies K_X$ is ample, kod(X) = 2. X is of general type.

- $d = 4 \implies K_X$ is trivial, kod(X) = 0. Simply connected complex manifolds with trivial canonical bundles are called *Calabi-Yau* manifolds. 2-dimensional Calabi-Yau manifolds are also called *K*3 surfaces.
- d < 4 ⇒ -K_X is ample, kod(X) = -∞. Complex manifolds with ample anticanonical bundls are called *Fano* manifolds. 2-dimensional *Fano* manifolds are also called *del Pezzo* surfaces. The only minimal del Pezzo surfaces are P² and P¹ × P¹. All other del Pezzo surfaces are "successive blow-ups" of P² at $n \in \{1, 2, ..., 8\}$ "general" points, hence are not minimal.

The minimal rational surfaces are \mathbb{P}^2 and the Hirzebruch surfaces

 $F_n := \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)\right), \quad \text{with} \quad n = 0, 2, 3, \dots$

 $F_1 = \text{blow-up of } \mathbb{P}^2 \text{ at one point} = \mathbb{P}^2 \# \overline{\mathbb{P}^2}, \text{ and is NOT minimal. } F_0 = \mathbb{P}^1 \times \mathbb{P}^1. \text{ A}$ *Hirzebruch surface* is a ruled surface (\mathbb{P}^1 -bundle) X over \mathbb{P}^1 . Grothendieck splitting^b implies

$$X \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)) \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)) =: F_n, \text{ for some } n \ge 0.$$

 ${}_{-} {}^{a}K_{\mathbb{P}^{3}} = \bigwedge^{n} (\Omega^{1}\mathbb{P}^{3})^{*} = \wedge^{n-1} (\Omega^{1}X)^{*} \otimes N_{X/\mathbb{P}^{3}}^{*} = K_{X} \otimes [-X]|_{X}.$

^{*b*}Vector bundles over \mathbb{P}^1 are direct sums of line bundles.

Minimal models in higher dimensions & nefness of line bundles

Importance of rational curves and nefness of canonical bundle

DEFINITION: A line bundle L on a complex projective manifold M is said to be nef if $L \cdot C \ge 0$ for each irreducible curve C in M.

- RECALL (Castelnuovo Criterion): A curve $C \subset X$ if a (-1)-curve if and only if $C \cdot C < 0$ and $K_X \cdot C < 0$. Hence, K_X nef $\implies X$ minimal (i.e. no (-1)-curves).
- FACT: For a smooth projective surface X, K_X not nef \implies either $X \cong \mathbb{P}^2$, or X is ruled (\mathbb{P}^1 -bundle over a curve), or X is NOT minimal (i.e. it contains (-1)-curves).
- **P** Thus, if $kod(X) \ge 0$, then K_X is nef if and only if X is minimal (i.e. no (-1)-curves).
- FACT: If the canonical bundle K_M of a compact complex manifold M is not nef, then, there exists a rational curve C (i.e. C is birationally equivalently to \mathbb{P}^1) which is contracted by π to a point and satisfies $K_M \cdot C < 0$. [Contraction Theorem]
- DEFINITION: A complex projective manifold is said to be *minimal* if its canonical bundle is nef.
- DEFINITION: A line bundle on a compact complex manifold is said to be *nef* if for every $\varepsilon > 0$, there is a smooth hermitian metric h_{ε} on *L* such that $\mathbf{i} \Theta_{h_{\varepsilon}(L)} \ge -\varepsilon \omega$, where ω is any fixed Hermitian metric on *M*.

Differential-geometric Intuition of Nefness

FACT: For a Kähler metric on a complex manifold M, its Ricci curvature (of its underlying Riemannian metric) is the induced curvature on the canonical bundle

$$K_M := \bigwedge^n \left(T^{1,0} M \right)^*.$$

Note:
$$c_1(M) := c_1(T^{1,0}M) = -c_1((T^{1,0}M)^*) = -c_1(\bigwedge^n (T^{1,0}M)^*) = -c_1(K_M).$$

DEFINITION: Intersection of a line bundle *L* on a compact Kähler manifold (M, ω) with a curve $C \subset M$:

$$L \cdot C := \int_C c_1(L|_C) = \deg(L|_C) = \begin{cases} \text{sum of orders of zeros and poles of a} \\ \text{generic meromorphic section of } L|_C \end{cases}$$

In particular,

$$K_M \cdot C := \int_C c_1(K_M|_C) = \deg(K_M|_C) = \int_C \left\{ \begin{array}{l} \text{class of curvature of} \\ \text{any metric on } K_M \end{array} \right\} = \int_C \operatorname{Ric}(\omega)$$

So, conditions such as $K_M \cdot C \ge 0$, $K_M \cdot C \le 0$, etc. are positivity/negativity conditions on "average Ricci curvature of (M, ω) restricted on curves".

Difficulties in Minimal Model Program in higher dimensions

- PROBLEM: The image of a smooth variety under contraction of a rational curve may be singular.
 - Fix: Allow minimal models to be (mildly) singular.
 - PROBLEM: Singularities arising from "small" contractions (codim(Exc) \geq 2) render intersection numbers of canonical divisor with curves undefined. (Canonical divisor is not Q-Cartier.)
 - Conjecture: "Flips" codim-two surgeries; "repair" non-Q-Cartier canonical divisors.
 - PROBLEM: Existence and finite termination of flips?
 - Partial fix: Existence up to dimension 5. Finite termination up to dimension 3.
 - PROBLEM: Uniqueness of minimal models?
 - Partial fix: Uniqueness fails. But, in dimension 3, birationally equivalent minimal varieties are related by known codim-two surgeries called "flops."
 - PROBLEM: Higher-dim'l birationally equiv. minimal varieties still related by flops?
 - PROBLEM: Existence, finite termination of flops? Number of birational models $< \infty$?

From minimal model to canonical model

Abundance Conjecture (from MMP)

If K_M is nef, then K_M is *Semiample*, i.e. some pluricanonical map $\phi_{mK_M} : M \dashrightarrow \mathbb{P}^N$ is in fact holomorphic.

FACT: If M is of general type and K_M is nef, then K_M is semiample.

FACT: The Abundance Conjecture is true for 3-folds.

If $R(M) := \bigoplus_{m \ge 0} H^0(M, mK_M)$ is finitely generated, then the images of the pluricanonical maps ϕ_{mK_M} , for $m \gg 0$, are all isomorphic to:

 $\operatorname{Proj}(R(M)) =: M_{\operatorname{can}}.$

Going from *minimal model* to *canonical model*:

- Gain: uniqueness for each birational class.
- Potential Gain: ampleness of $K_{M_{can}}$. (True for minimal X of general type.)
- Losses:
 - even worse singularities than the minimal models,

 - existence requires finite generation of R(M).

Bigness of Line Bundles

Loosely speaking, "bigness" of a line bundle is "birational ampleness."

DEFINITION: A line bundle *L* on a compact complex manifold *M* is said to be **big** if $\kappa(M, L) = \dim_{\mathbb{C}}(M)$.

- FACT: Bigness of *L* (and nonsingularity of *M*) \implies for some m > 0, the rational map $\phi_{mL} : M \dashrightarrow \mathbb{P}(H^0(M, mL))$ is surjective and birational.
- DEFINITION: A compact complex manifold *M* is said to be *of general type* if any one of the following equivalent conditions holds: $kod(M) = dim_{\mathbb{C}}(M) \iff K_M$ is big \iff for some large enough m > 0, the pluricanonical map $\phi_{mK_M} : M \dashrightarrow \mathbb{P}^N$ is a birational holomorphic map onto its image.
- The only thing you need to know (How many of you are in outer space by now?): For a compact complex manifold M, its canonical bundle K_M being "nef and big" means
 - \blacksquare M is minimal and of general type,
 - hence, its canonical model M_{can} exists, with $K_{M_{can}}$ ample,
 - M_{can} is a birational model of M,
 - M_{can} can be thought of as the image of ϕ_{mK_M} , for $m \gg 0$.

Canonical metrics, birational geometry & MMP

- FAMOUS FACT: A compact Kähler manifold M with $c_1(M) \le 0$ ($K_M \ge 0$) admits a unique Kähler-Einstein metric. [Yau: continuity method], [Aubin, ?? method], [Cao: Kähler-Ricci flow].
 - **P** Recall: K_M nef and big $\implies M_{can}$ exists, with $K_{M_{can}}$ ample.
 - One might expect: The canonical model M_{can} of a projective manifold M may admit a (singular) Kähler-Einstein metric.

The (Fields-medal-winning) Calabi-Yau Theorem

On a compact Kähler manifold, the prescribed Ricci curvature problem has a unique solution in every Kähler class. More precisely:

Let M be a compact Kähler manifold. Then, given

any form $\Omega \in -\mathbf{i} \, 2\pi \, c_1(M)$,

■ any Kähler class $[\omega] \in H^2(M, \mathbb{R}) \cap H^{1,1}(M, \mathbb{C})$,

there exists a unique Kähler form $\omega \in [\omega]$ such that $\operatorname{Ric}(\omega) = \Omega$.

Recent Results

Canonical metrics on varieties of general type via Kähler-Ricci flow

[Tian-Zhang, '06]

If X is a minimal complex surface of general type, then the global solution of the Kähler-Ricci flow converges to a positive current $\tilde{\omega}_{\infty}$ which descends to the Kähler-Einstein orbifold metric on its canonical model. In particular, $\tilde{\omega}_{\infty}$ is smooth outside finitely many rational curves and has local continuous potential.

[Casini-La Nave, Mar '06]

Let M be a projective manifold of general type with canonical divisor K_M not nef. Then,

- Some curve $C \subset M$ with $K_M \cdot C < 0$ and a holomorphic map $c : M \longrightarrow M'$ (M' possibly singular) which contracts C.
- If the Kähler-Ricci flow g(t) on M, with a certain initial metric depending on K_M and c, develops singularity in finite time, say T;
- If the singular locus of g(T) is contained in a proper subvariety of M;
- If M' is furthermore smooth, then g(T) descends to a smooth metric on M'.

Recent Results

Canonical metrics on surfaces of intermediate Kodaira dimension via Kähler-Ricci flow

- A properly (kod(S) = 1) elliptic surface $S \xrightarrow{f} \Sigma$ is a fibration over a curve Σ with generic fiber being a smooth elliptic curve. It turns out that the base curve Σ is the canonical model of S.
- [Tian-Song, Mar '06] The Kähler-Ricci flow on a minimal properly elliptic surface $S \xrightarrow{f} S_{can}$ has global solution $\omega(t, \cdot)$ which converges as currents to $f^*\omega_{\infty}$, where ω_{∞} is a positive current on S_{can} , smooth on the smooth locus of S_{can} , and is a "generalized" Kähler-Einstein metric in the following sense:

$$\operatorname{Ric}(\omega_{\infty}) = -\omega_{\infty} + \omega_{WP} + \left\{ \begin{array}{l} \text{further correction terms due to} \\ \text{presence of singular fibers of } f \end{array} \right\},$$

where ω_{WP} is the induced Weil-Petersson metric on S_{can} .

THE END THANK YOU!