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Abstract

“Analytic invariants” of complex manifolds that the generalizations of the genus of
curves, and their birationally invariant nature.

Blow-up of a surface at a point.

Birational classification of complex surfaces via minimal models. Enriques-Kodaira
classification.

Canonical models.

Calabi-Yau manifolds and K3 surfaces.

Fano manifolds and del Pezzo surfaces.
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Examples of Compact Complex Surfaces
1. P2, P1 × P1 (∼= smooth quadric surface in P3), smooth hypersurfaces in P3,

two-dimensional submanifolds of Pn, Cartesian products of two compact Riemann
surfaces.

2. fake projective planes := compact complex surfaces with b1 = 0, b2 = 1 not
isomorphic to P2. Such a surface is projective algebraic and it is the quotient of the
open unit ball in C2 by a discrete subgroup of PU(2, 1).The first example (Mumford
surface) was constructed Mumford using p-adic tecnhniques. Recently, all possible (17
known finite classes plus four possible candidates and no more) fake projective planes
have been enumerated by Gopal Prasad and Sai-Kee Yeung. See abstract for
colloquium on March 26, 2007.

3. Ruled surface := P1-bundle over a compact Riemann surface.

Can be shown: All ruled surfaces are projectivizations of rank-two vector bundles
over compact Riemann surfaces.

Hirzebruch surfaces: P(OP1 ⊕OP1 (−n)), n = 0, 1, 2, . . .

4. Elliptic surface := total space of a holomorphic fibration over a compact Riemann
surface with generic fiber being a smooth elliptic curve.

5. 2-dimensional complex tori: C2/Λ, where Λ ∼= Z4 is a discrete lattice in C2.

6. Hopf surface := compact complex surface with universal cover C2 − {0}. For example,`
C2 − {0}

´
/Z, where the action of Z on C2 is generated by C2 −→ C2 : z 7→ 2 z.

(The Hopf surface is compact and non-Kähler.)

C
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In the Beginning ...

Goddess
Said

Let there be ...

CURVES.

I am not joking; ask the string theorists.
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Classification of smooth compact complex curves by genus

analytic/topological genus g(C) = h0(C, Ω1

C) = h0(C, KC)

degree of canonical bundle deg(KC) = 2g(C) − 2

g(C) = h0(KC) C̃ curvature deg(KC) kod(C)

0 P1 positive < 0 −∞

1 C flat = 0 0

≥ 2 CH
1 negative > 0 1
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Canonical maps for curves of genus≥ 2

For a a line bundle L on a smooth compact complex curve (Riemann surface) C,

deg(L) =

Z

C
c1(L) =

8
<
:

sum of orders of zeros and poles of

a generic meromorphic section of L

9
=
;

h0(C, L) > 0 =⇒ deg(L) ≥ 0 ; conversely h0(C, L) = 0 ⇐= deg(L) < 0

The canonical map φKC
for a curve C of genus g ≥ 2 is

C ..............
φKC

- P(H0(C, KC)) ∼= Pg−1

x - [s0(x) : · · · : sg−1(x)]

where s0, . . . , sg−1 form a basis for H0(C, KC) ∼= Cg .

φKC
is undefined at each x ∈ C with s0(x) = · · · = sg−1(x) = 0. Such points of C are

called base points of φKC
.

Note: g ≤ 0 =⇒ deg(KC) = 2(g − 1) < 0 =⇒ no canonical map.
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Canonical images of curves of genus≥ 1

FACT: For C with g(C) = h0(C, KC) ≥ 1, φKC
is in fact base-point-free

and is therefore a holomorphic map C −→ P(H0(C, KC)) ∼= Cg−1.

For C with g(C) ≥ 1,

kod(C) := dimension of image of canonical map φKC
.

g(C) kod(C) φKC
type

0 −∞ C ∼= P1 Riemann sphere

1 0 constant C ∼= C/Λ complex torus

2 1 C
2:1
−→ P1 hyperelliptic a

≥ 3 1 C
2:1
−→ P

g−1 hyperelliptic

C →֒ Pg−1 projective curve of degree 2g − 2

a
hyperelliptic curve := (2 : 1)-branched cover of P1
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Discrete invariants generalizing genera of curves

For a curve C,

g(C) :=: topological genus = analytic genus := h1,0(C)

h1,0(C) = hn,0(C) = h0(C,Ωn(C)) = h0(C, KC), n := dimC(C) = 1.

For a complex manifold M of dimension n,

irregularity, q := h1(M,OM ) = h0,1(M)
Kähler
= h1,0(M)

geometric genus, pg := hn,0(M) = h0(M, Ωn
M ) = h0(M, KM )

Hodge Numbers, hp,0(M) := h0(M, Ωp
M ), 0 ≤ p ≤ n

mth plurigenus, Pm(M) := h0(M, Km
M ), m = 1, 2, 3, . . .

However, these “biholomorphic” invariants are in fact only “birational” (or
bimeromorphic) invariants due to the operation of blow-up of points.
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Blow-up of C
2 at the origin

Bl0(C2) :=
{

( (x, y), [u : v] ) ∈ C2 × P1 | xv = yu
}

π ↓ ↓

C2 ∈ (x, y)

( (x, y), [u : v] ) ∈ Bl0(C2) ⇐⇒
(x, y) ∈ C2 lies in the 1-dimensional

subspace [u : v] ∈ P1.

π−1(x) = (x, [x] ), for any x 6= 0.

π−1(0) = 0× P
1 ∼= P

1 = space of tangential directions through
0 ∈ C2.

Bl0(C2) − π−1(0)
π

−→ C2 − 0 is a biholomorphism.

Both Bl0(C2) and C2 smooth, i.e. blow-ups and blow-downs of points
preserve smoothness.

Blow-up increases the second Betti number by 1. Blow-down
decreases it by 1.
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Hartogs’ Extension Theorem and Birational Invariants

DEFINITION A birational (or bimeromorphic) map X 99K Y between two complex
manifolds is a biholomorphic map X\S −→ Y \T , where S, T are proper subvarieties of X

and Y respectively.

In the complex algebraic geometry setting, the various “biholomorphic invariants” (defined
via differential forms) introduced above are in fact “birational invariants”:

1. Hartog’s Extension Theorem: meromorphic (C-valued) functions whose loci of
non-holomorphicity has codimension ≥ 2 extend to holomorphic functions.

2. The existence of birational but non-biholomorphic maps in dimensions ≥ 2.
Prototypical examples: blow-up of points.

3. The locus of indeterminacy of a birational map between algebraic manifolds has
codimension at least two.

Consequently, pull-backs of holomorphic forms of algebraic manifolds under birational maps
have loci of indeterminacy of codimension ≥ 2; hence such pull-backs always extend to
holomorphic forms by Hartogs’ Theorem.

PROBLEM: Each birational equivalence class of surfaces

contains infinitely many smooth surfaces.

Q: Is there a distinguished representative in a given birational class?
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Intersection numbers of two curves on a surface

Let L = [D] be a holomorphic line bundle defined by the divsior D on a compact complex
surface X. Let C ⊂ X be a curve embedded in X. Then, the intersection number of C and
D is definedy by

D · C :=

Z

C
c1([D]|C) =

Z

C
c1(L|C) = deg(L|C) =

8
<
:

sum of orders of zeros and poles of a

generic meromorphic section of L|C

9
=
;

In particular, D · C < 0 =⇒ the restriction of L = [D] to C has no nonzero sections.

FACT: The exceptional locus E := π−1(0) ∼= P1 is a copy of P1

embedded in the surface X := Bl0(C2) with self-intersection −1;

equivalently, [E]|E = NE/X is equivalent to the tautological bundle over P1;

equivalently, deg([E]|E) = −1.

Consequently, NE/X has no holomorphic sections and E cannot be holomorphically
deformed in X.
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Birational maps of complex surfaces & minimal surfaces

FACT: Every birational map between two smooth compact complex surfaces

is a finite succession of blow-ups and blow-downs of points

RECALL: The exceptional locus of a blow-up is a copy of P1 with self-intersection −1.

DEFINITION: An copy of P1 in a surface with self-intersection −1 is a called a (−1)-curve.

Castelnuovo-Enriques Blow-down Criterion:
An embedded curve C in a surface X can be blown down to a point

⇐⇒ C is a (−1)-curve

⇐⇒ C · C < 0 and KX · C < 0.

A way to find a distinguished representative within a birational class: Given a smooth
surface, locate all of its (−1)-curve(s), blow them down one at a time, until we reach smooth
surface with no (−1)-curves. This process must terminate in finitely many steps because
each blow-down lowers second Betti number by 1.

DEFINITION: A compact complex surface is said to be minimal if it contains no (−1)-curves.
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Enriques-Kodaira Classification of (minimal) complex surfaces

class kod(X) a(X) pg q KX
? = 0 b2 c21 c2 = e

rational 2 0 0 1, 2 8, 9 3, 4

ruleda (g ≥ 1) −∞ 2 0 g 2 8(1 − g) 4(1 − g)

VII0 0, 1 0 1 −b2 b2

K3 0, 1, 2 1 0 1 22 0 24

Enriques 2 0 0 2 10 0 12

2-tori 0 0, 1, 2 1 2 1 6 0 0

hyperelliptic 2 0 1 2, 3, 4, 6 2 0 0

primary Kodaira 1 1 2 1 4 0 0

2nd-ary Kodaira 1 0 1 2, 3, 4, 6 0 0 0

properly elliptic 1 1, 2 0 ≥ 0

general type 2 2 > 0 b1/2 > 0 > 0

a(X) := trdegC (C(X)), the transcendence degree of the field C(X) of rational functions of
X. a(X) is called the algebraic dimension of X. The following inequalities hold:
kod(X) ≤ a(X) ≤ dimC(X). Furthermore, a(X) = 1 =⇒ X is an elliptic surface.

a
A ruled surface is a P1-bundle over a curve of genus g ≥ 0.
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The Kodaira Dimension of a Compact Complex Manifold

Let L be a line bundle on a compact connected complex manifold M . Its Iitaka-Kodaira
dimension is

κ(M, L) :=

8
>>>>><
>>>>>:

−∞, if h0(M, mL) = 0, ∀m ≥ 1,

sup

8
<
:dimC φmL(M)

˛̨
˛̨
˛̨

m ∈ N

h0(M, mL) > 0

9
=
; , otherwise

FACT: κ(M, L) ∈ {−∞, 0, 1, 2, . . . , a(M)}, where a(M) := trdegC(C(M)) is the algebraic
dimension of M , and 0 ≤ a(M) ≤ dimC(M).

FACT: If κ := κ(M, L) ≥ 0, then there exists a positive integer m0 and a constant C > 0

such that 1

C
mκ ≤ h0(M, L⊗m) ≤ C mκ.

DEFINITION: The Kodaira dimension kod(M) := κ(M, KM ).

kod(M) is the maximal dimension of the images of the pluricanonical maps φmKM
of M .
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More on examples of complex surfaces

Hypersurfaces X in P3 of degree d. The adjunction formulaa states
KX = (KP3 + [X])|X = OX(d − 4), since KP3 = O(−4).

d > 4 =⇒ KX is ample, kod(X) = 2. X is of general type.

d = 4 =⇒ KX is trivial, kod(X) = 0. Simply connected complex manifolds with
trivial canonical bundles are called Calabi-Yau manifolds. 2-dimensional
Calabi-Yau manifolds are also called K3 surfaces.

d < 4 =⇒ −KX is ample, kod(X) = −∞. Complex manifolds with ample
anticanonical bundls are called Fano manifolds. 2-dimensional Fano manifolds
are also called del Pezzo surfaces. The only minimal del Pezzo surfaces are P2

and P1 × P1. All other del Pezzo surfaces are “successive blow-ups” of P2 at
n ∈ { 1, 2, . . . , 8 } “general” points, hence are not minimal.

The minimal rational surfaces are P2 and the Hirzebruch surfaces

Fn := P (OP1⊕OP1(−n)) , with n = 0, 2, 3, . . .

F1 = blow-up of P2 at one point = P2 # P2, and is NOT mimimal. F0 = P1 × P1. A
Hirzebruch surface is a ruled surface (P1-bundle) X over P1. Grothendieck splittingb

implies

X ∼= P(OP1 (a) ⊕OP1(b)) ∼= P(OP1 ⊕OP1 (−n)) =: Fn, for some n ≥ 0.

a
KP3 =

Vn(Ω1P3)∗ = ∧n−1(Ω1X)∗ ⊗ N∗
X/P3

= KX ⊗ [−X] |X .

b
Vector bundles over P1 are direct sums of line bundles.
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Minimal models in higher dimensions & nefness of line bundles
Importance of rational curves and nefness of canonical bundle

DEFINITION: A line bundle L on a complex projective manifold M is said to be

nef if L · C ≥ 0 for each irreducible curve C in M .

RECALL (Castelnuovo Criterion): A curve C ⊂ X if a (−1)-curve if and only if
C · C < 0 and KX · C < 0. Hence, KX nef =⇒ X minimal (i.e. no (−1)-curves).

FACT: For a smooth projective surface X, KX not nef =⇒ either X ∼= P2, or X is
ruled (P1-bundle over a curve), or X is NOT minimal (i.e. it contains (−1)-curves).

Thus, if kod(X) ≥ 0, then KX is nef if and only if X is minimal (i.e. no (−1)-curves).

FACT: If the canonical bundle KM of a compact complex manifold M is not nef, then,
there exists a rational curve C (i.e. C is birationally equivalently to P1) which is
contracted by π to a point and satisfies KM · C < 0. [Contraction Theorem]

DEFINITION: A complex projective manifold is said to be minimal if its canonical

bundle is nef.

DEFINITION: A line bundle on a compact complex manifold is said to be nef
if for every ε > 0, there is a smooth hermitian metric hε on L such

that iΘhε(L) ≥ −εω, where ω is any fixed Hermitian metric on M .

A Crash Course onCompact Complex Surfaces – p. 16/24



Differential-geometric Intuition of Nefness

FACT: For a Kähler metric on a complex manifold M , its Ricci curvature (of its underlying
Riemannian metric) is the induced curvature on the canonical bundle

KM :=
^

n
`
T 1,0M

´∗
.

Note: c1(M) := c1
`
T 1,0M

´
= −c1

`
(T 1,0M)∗

´
= −c1

`Vn(T 1,0M)∗
´

= −c1(KM ).

DEFINITION: Intersection of a line bundle L on a compact Kähler manifold (M, ω) with a
curve C ⊂ M :

L · C :=

Z

C
c1(L|C) = deg(L|C) =

8
<
:

sum of orders of zeros and poles of a

generic meromorphic section of L|C

9
=
;

In particular,

KM · C :=

Z

C
c1(KM |C) = deg(KM |C) =

Z

C

8
<
:

class of curvature of

any metric on KM

9
=
; =

Z

C
Ric(ω)

So, conditions such as KM · C ≥ 0, KM · C ≤ 0, etc. are positivity/negativity conditions on
“average Ricci curvature of (M, ω) restricted on curves”.
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Difficulties in Minimal Model Program in higher dimensions

PROBLEM: The image of a smooth variety under contraction of a rational

curve may be singular.

Fix: Allow minimal models to be (mildly) singular.

PROBLEM: Singularities arising from “small” contractions (codim(Exc) ≥ 2) render

intersection numbers of canonical divisor with curves undefined.

(Canonical divisor is not Q-Cartier.)

Conjecture: “Flips” — codim-two surgeries; “repair” non-Q-Cartier canonical divisors.

PROBLEM: Existence and finite termination of flips?

Partial fix: Existence up to dimension 5. Finite termination up to dimension 3.

PROBLEM: Uniqueness of minimal models?

Partial fix: Uniqueness fails. But, in dimension 3, birationally equivalent minimal

varieties are related by known codim-two surgeries called “flops.”

PROBLEM: Higher-dim’l birationally equiv. minimal varieties still related by flops?

PROBLEM: Existence, finite termination of flops? Number of birational models < ∞?
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From minimal model to canonical model
Abundance Conjecture (from MMP)

If KM is nef, then KM is semiample, i.e. some pluricanonical map φmKM
: M 99K PN

is in fact holomorphic.

FACT: If M is of general type and KM is nef, then KM is semiample.
FACT: The Abundance Conjecture is true for 3-folds.

If R(M) :=
L

m≥0

H0(M, mKM ) is finitely generated, then the images of the pluricanonical

maps φmKM
, for m ≫ 0, are all isomorphic to:

Proj(R(M)) =: Mcan.

Going from minimal model to canonical model :

Gain: uniqueness for each birational class.

Potential Gain: ampleness of KMcan . (True for minimal X of general type.)

Losses:

even worse singularities than the minimal models,

0 ≤ dim(Mcan) = kod(M) ≤ dim(M),

existence — requires finite generation of R(M).
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Bigness of Line Bundles
Loosely speaking, “bigness” of a line bundle is “birational ampleness.”

DEFINITION: A line bundle L on a compact complex manifold M is said to be

big if κ(M, L) = dimC(M).

FACT: Bigness of L (and nonsingularity of M ) =⇒ for some m > 0, the rational map
φmL : M 99K P(H0(M, mL)) is surjective and birational.

DEFINITION: A compact complex manifold M is said to be of general type if any
one of the following equivalent conditions holds: kod(M) = dimC(M) ⇐⇒ KM is big
⇐⇒ for some large enough m > 0, the pluricanonical map φmKM

: M 99K PN is a
birational holomorphic map onto its image.

The only thing you need to know (How many of you are in outer space by now?):
For a compact complex manifold M , its canonical bundle KM being “nef and big ”
means

M is minimal and of general type,

hence, its canonical model Mcan exists, with KMcan
ample,

Mcan is a birational model of M ,

Mcan can be thought of as the image of φmKM
, for m ≫ 0.
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Canonical metrics, birational geometry & MMP

FAMOUS FACT: A compact Kähler manifold M with c1(M) ≤ 0

(KM ≥ 0) admits a unique Kähler-Einstein metric.
[Yau: continuity method], [Aubin, ?? method], [Cao: Kähler-Ricci flow].

Recall: KM nef and big =⇒ Mcan exists, with KMcan
ample.

One might expect: The canonical model Mcan of a projective
manifold M may admit a (singular) Kähler-Einstein metric.

The (Fields-medal-winning) Calabi-Yau Theorem

On a compact Kähler manifold, the prescribed Ricci curvature problem has a unique solution

in every Kähler class. More precisely:

Let M be a compact Kähler manifold. Then, given

any form Ω ∈ −i 2π c1(M),

any Kähler class [ω] ∈ H2(M, R) ∩ H1,1(M, C),

there exists a unique Kähler form ω ∈ [ω] such that Ric(ω) = Ω.
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Recent Results
Canonical metrics on varieties of general type via Kähler-Ricci flow

[Tian-Zhang, ’06]
If X is a minimal complex surface of general type, then the global solution of the Kähler-Ricci
flow converges to a positive current eω∞ which descends to the Kähler-Einstein orbifold
metric on its canonical model. In particular, eω∞ is smooth outside finitely many rational
curves and has local continuous potential.

[Casini-La Nave, Mar ’06]
Let M be a projective manifold of general type with canonical divisor KM not nef. Then,

∃ some curve C ⊂ M with KM · C < 0 and a holomorphic map c : M −→ M ′ (M ′

possibly singular) which contracts C.

the Kähler-Ricci flow g(t) on M , with a certain initial metric depending on KM and c,
develops singularity in finite time, say T ;

the singular locus of g(T ) is contained in a proper subvariety of M ;

If M ′ is furthermore smooth, then g(T ) descends to a smooth metric on M ′.
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Recent Results
Canonical metrics on surfaces of intermediate Kodaira dimension via Kähler-Ricci flow

A properly (kod(S) = 1) elliptic surface S
f

−→ Σ is a fibration over a
curve Σ with generic fiber being a smooth elliptic curve. It turns out
that the base curve Σ is the canonical model of S.

[Tian-Song, Mar ’06] The Kähler-Ricci flow on a minimal properly

elliptic surface S
f

−→ Scan has global solution ω(t, · ) which converges
as currents to f∗ω∞, where ω∞ is a positive current on Scan, smooth
on the smooth locus of Scan, and is a “generalized” Kähler-Einstein
metric in the following sense:

Ric(ω∞) = −ω∞ + ωWP +





further correction terms due to

presence of singular fibers of f



 ,

where ωWP is the induced Weil-Petersson metric on Scan.
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THE END
THANK YOU!
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