M362k Test \# 2

Directions: Indicate all answers on the answer sheet provided. Please enter your name and student \# where requested. An assertion is to be interpreted as a true-false question and answered "A" if true, "E" if false. Each question has only one correct answer.

1. Suppose X is a discrete random variable which takes on the values $-2,-1,0,1,2$ with equal probability. What is $P(X<0)$?
(A) $1 / 5$
(B) $2 / 5$
(C) $3 / 5$
(D) $2 / 3$
(E) None of these
2. Suppose X is the same as in problem 1. Let $Y=X^{2}$. What is $P(Y \leq 1)$?
(A) $1 / 5$
(B) $2 / 5$
(C) $3 / 5$
(D) $4 / 5$
(E) None of these
3. Suppose we have a circular dartboard of radius 3 divided into three sections: a central disk of radius 1 , and two concentric rings of radial width 1 , labeled as in the following sketch:
(Region 1 is a disk, regions 2 and 3 are rings.)
Suppose a dart is thrown randomly at this board (with certainty that the board is hit somewhere; "randomly" means that the the probability of hitting some subregion is proportional to the area of the subregion.
Let X denote the number of the region hit; so X is a DVR with values in $\{1,2,3\}$. Which of the following is a correct description of the distribution of X ?
(A) $P(X=1)=1 / 9, P(X=2)=1 / 3, P(X=3)=5 / 9$
(B) $P(X=i)=1 / 3, \quad i=1, . ., 3$
(C) $P(X=1)=1 / 9, P(X=2)=4 / 9, P(X=3)=4 / 9$
(D) $P(X=1)=1 / 9, P(X=2)=2 / 9, P(X=3)=1 / 3$
(E) None of these
4. For the same dartboard described in problem 3., let Y be the random variable equal to the distance from the center of the point hit. Y is a continuous random variable. What is its distribution function $F(y)=P(Y \leq y)$?
(A) $F(y)=2 y, \quad 0 \leq y \leq 3$
(B) $F(y)=\pi y^{2}, \quad 0 \leq y \leq 3$
(C) $F(y)=2 y / 9, \quad 0 \leq y \leq 3$
(D) $F(y)=y^{2} / 9, \quad 0 \leq y \leq 3$
(E) None of these
5. Suppose X is a continuous random variable with the $p d f f(x)=2 x / 3$ on $1 \leq x \leq 2$. (Note that $\int_{1}^{2}(2 x / 3) d x=1$.)
Let $Y=\ln X$. What is the $p d f g(y)$ of Y ?
(A) $g(y)=2 \ln y / 3$ on $[0, \ln 2]$
(B) $g(y)=2 e^{y} / 3$ on $[0, \ln 2]$
(C) $g(y)=2 e^{2 y} / 3$ on $[0, \ln 2]$
(D) $g(y)=y^{2} / 3$ on $[0, \ln 2]$
(E) None of these
6. Let X be the random variable described in problem 5. Which of the following random variables is uniformly distributed? (This means the distribution is a constant.)
(A) $2 X / 3$
(B) $X^{2} / 3$
(C) $3 \mathrm{X} / 2$
(D) $\sqrt{3 X}$
(E) None of these
7. If X is a random variable which is uniformly distributed on the interval $[a, b]$, (which means that its $p d f$ is the function $1_{[a, b]} /(b-a)$), then $Y=2 X$ is also a uniformly distributed random variable (on some interval.)
8. If X is a random variable which is uniformly distributed on the interval $[a, b]$ then $Y=X^{2}$ is also a uniformly distributed random variable (on some interval.)
9. Suppose we throw a dart at the unit disk D in \mathbb{R}^{2} (i.e. the set $x^{2}+y^{2} \leq 1$) in such a way that if $\mathbf{W}=(X, Y)$ is the point hit, then the distribution of \mathbf{W} (i.e. the joint distribution of $(X, Y))$ has pdf $f(x, y)=C \cdot|x|$ where C is a constant. What is C ? (Hint: $\iint_{D} f(x, y) d x d y=1$.)
(A) $3 / 2$
(B) $4 / 3$
(C) $3 / 4$
(D) 3
(E) None of these
10. In the situation described in problem 9., what is the (marginal) $p d f$ of the random variable X ?
(A) $C \cdot \int_{-1}^{1}|x| d x$
(B) $C \cdot \int_{-1}^{1}|x| d y$
(C) $C \cdot \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}|x| d x$
(D) $C \cdot \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}|x| d y$
(E) None of these
11. A segment of length L (which we may consider to be the interval $[0, L]$ in \mathbb{R}) is broken at a random point. Consider the random variable $S=$ length of the shorter piece. It is easy to show (and you may assume this) that the pdf of S is $f(s)=2 / L$ on the interval $0 \leq s \leq L / 2$. What is the expected length of the shorter piece, $E(S)$?
(A) $L / 4$
(B) $L / 2$
(C) $L^{2} / 4$
(D) 1
(E) None of these
12. In the situation described in problem 11., what is expected length of the square of the shorter piece, $E\left(S^{2}\right)$?
(Note: You don't have to compute the distribution of S^{2} to compute $E\left(S^{2}\right)$.)
(A) $L^{3} / 24$
(B) $L^{2} / 12$
(C) $L^{2} / 16$
(D) 1
(E) None of these
13. Suppose a fair coin $(P(H)=1 / 2)$ is tossed n times. Let X be the random variable equal to the number of H occuring. What is $E(X)$?
(A) $2 n$
(B) $\sqrt{2 n}$
(C) $1 / 2$
(D) $n / 2$
(E) None of these
14. Suppose we toss a fair coin $(P(H)=1 / 2)$ repeatedly. Let Y be the randon variable equal to the number of tosses till $k H$ occur. What is $E(Y)$?
(Hint: You could let $Y_{1}=$ the number of tosses till 1 H occurs, $Y_{2}=$ the number of additional tosses till the next H occurs, etc.)
(A) $k / 2$
(B) $2 k$
(C) $k^{2} / 2$
(D) $k(k-1) / 2$
(E) None of these
15. Again, suppose we toss a fair coin $(P(H)=1 / 2)$ repeatedly. Let Z be the randon variable equal to the number of tosses till both H and T occur. What is $E(Z)$?
(A) 3
(B) 4
(C) 5
(D) 2
(E) None of these

ANSWERS:

B C A D C B A E C D
A B D B A

