Directions: Indicate all answers on the answer sheet provided. Please enter your name and student \# where requested. An assertion is to be interpreted as a true-false question and answered "A" if true, "E" if false. Each question has only one correct answer.
Turn in legible scratchwork for possible partial credit. (Even for a True-False question, you can give a reason or counterexample.)

1. Suppose y is a function of x satisfying $y^{3}-y-x=6$, and that $y(0)=2$. What is $y^{\prime}(0)$? (Hint: Differentiate implicitly and solve for y^{\prime}.)
(A) $1 / 2$
(B) $1 / 13$
(C) $1 / 11$
(D) $7 / 11$
(E) None of these
2. If $f(x)$ is differentiable everywhere, and $f(1)=3, f(2)=1$, then by the Mean Value Theorem, there is a c with $1<c<2$ and $f^{\prime}(c)=$
(A) 2
(B) -2
(C) $1 / 2$
(D) $-1 / 2$
(E) None of these
3. Suppose $f(x)$ is a function defined whenever $x \neq 0$. Suppose that $f^{\prime}(x)<0$ for all x where f is defined. Then we can conclude that $f(1)<f(-1)$.
4. Suppose $f(x)=3 \sqrt{x}-\frac{x}{2}$, for $x>0$. Then at $x=1, f$ (Note: $f^{\prime}(x)=\frac{3}{2 \sqrt{x}}-\frac{1}{2}$.)
(A) is decreasing
(B) is increasing
(C) has local max
(D) has local min
(E) None of these
5. For the same $f(x)$ as in $\mathbf{4}$, on what interval is f decreasing?
(A) $(9, \infty)$
(B) $(0,9)$
(C) $(\sqrt{3}, \infty)$
(D) $(0, \sqrt{3})$
(E) None of these
6. For the same $f(x)$ as in $\mathbf{4}$, at $x=9, f$
(A) is decreasing
(B) is increasing
(C) has local max
(D) has local min
(E) None of these
\qquad
7. Consider the function $f(x)=x^{3}-3 x-1$ defined for all real $x . f(x)$ has a local maximum at some point $x=c$. What is $f(c)$? (Note ${ }^{* * *}$ We are asking for $f(c)$, not $c!$)
(A) -1
(B) 0
(C) -3
(D) 1
(E) None of these
8. Now consider the function $f(x)=x^{3}-3 x-1$ defined on $[-10,10]$. What is the absolute maximum of this function?
(A) 1
(B) 10
(C) 969
(D) Doesn't exist
(E) None of these
9. Suppose now that $g(x)=x^{4}-x^{3}$ defined for all real x. Which of the following is true for this function?
(A) $g(3 / 4)$ is a local max
(B) $g(3 / 4)$ is a local min
(C) $g(0)$ is a local max
(D) $g(0)$ is a local min
(E) None of these
10. Suppose $h(x)$ is a function defined for all real x, and $h^{\prime}(0)=0, h^{\prime \prime}(0)=0, h^{\prime}(x)>0$ for $x<0, h^{\prime}(x)<0$ for $x>0$. Which of the following is true for this function?
(A) $h(0)$ is a local max
(B) $h(0)$ is a local min
(C) $(0, h(0))$ is an inflection point
(D) $h(0)$ is not a local extreme
(E) None of these
11. Suppose $f(x)$ is defined for all real x. Which of the following implies that $f(0)$ is a local maximum?
(A) $\left.\left\{f^{\prime} 0\right)=0, f^{\prime \prime}(0)=0\right\}$
(B) $\left.\left\{f^{\prime} 0\right)=0, f(0)=1\right\}$
(C) $\left.\left\{f^{\prime} 0\right)=0, f^{\prime \prime}(0)>0\right\}$
(D) $\left.\left\{f^{\prime} 0\right)=0, f^{\prime \prime}(0)<0\right\}$
(E) None of these
12. Suppose $g(x)$ is defined and differentiable for all real x, and $g^{\prime}(x)=0$ only for $x=0$. Suppose also that $g(0)=1$, and $\lim _{x \rightarrow \pm \infty} g(x)=0$. Which of the following is a correct conclusion?
(A) The absolute min of g is 1 .
(B) The absolute max of g is 1 .
(C) g has a local max at $x=0$, but it may not be the absolute max.
(D) g has an absolute max, and an absolute min.
(E) None of these
13. What is the absolute maximum of $f(x)=\frac{x}{1+x^{2}}$ (defined for all $\left.x\right)$? (Note ${ }^{* * *}$: We want the value of f, not the x where the max occurs.)
(A) 0
(B) 1
(C) $1 / 2$
(D) 2
(E) None of these
14. What is the maximum possible area of a rectangle whose total perimeter is L ?
(Note ${ }^{* * *}$ We are asking for the area, not some length of a side.)
(A) $L^{2} / 16$
(B) $L^{2} / 4$
(C) $L^{2} / 8$
(D) L^{2}
(E) None of these
15. Consider the function $g(x)=x^{3}-x^{2}$ defned for all x. On which of the following intervals is $g(x)$ concave down?
(A) $\left(-\infty, \frac{2}{3}\right)$
(B) $\left(\frac{1}{3}, \infty\right)$
(C) $(0, \infty)$
(D) $\left(-\infty, \frac{1}{3}\right)$
(E) None of these
16. Which of the following functions $h(x)$ has an inflection point at $(0,0)$?
(A) $h(x)=x^{2}$
(B) $h(x)=x^{3}-x^{2}$
(C) $h(x)=x^{5}$
(D) $h(x)=x^{5}+x^{4}$
(E) None of these
17. Consider the function $f(x)=x$ on $[0,1]$, and the partition $P=\left\{0, \frac{1}{2}, 1\right\}$ of $[0,1]$. What is the lower sum $L_{f}(P)$ corresponding to this data? (Recall that this is a sum of the form $\sum_{i=1}^{2} m_{i}(\Delta x)_{i}$ where m_{i} denotes a minimum value.)
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{3}{4}$
(D) 1
(E) None of these
18. With the same function and partition as in the previous problem, what is the Riemann Sum obtained if we use the midpoint of each of the 2 subintervals of the partition as the points $x_{i}^{*}(i=1,2)$ where f is evaluated?
(Recall that this is a sum of the form $\sum_{i=1}^{2} f\left(x_{i}^{*}\right)(\Delta x)_{i}$ where x_{i}^{*} are points in the subintervals; here we assume these are midpoints.)
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{3}{4}$
(D) 1
(E) None of these
19. What is $\int_{1}^{4} \sqrt{x} d x$?
(A) 1
(B) $14 / 3$
(C) $-1 / 4$
(D) $16 / 3$
(E) None of these
20. What is $\int_{0}^{\pi / 4} \sec ^{2}(x) d x$?
(A) $1 / 3$
(B) 0
(C) $\left.\frac{\sec ^{3}(x)}{3}\right|_{0} ^{\pi / 4}$
(D) 1
(E) None of these
21. Suppose $f(x)=\int_{1}^{x} \frac{d t}{1+t^{4}}$. What is $f^{\prime}(2)$?
(A) $\pi / 5$
(B) $-16 / 17$
(C) $1 / 17$
(D) 1
(E) None of these
22. Suppose $f(x)=\int_{1}^{x^{2}} \frac{d t}{1+t^{4}}$. What is $f^{\prime}(x)$?
(A) $\frac{2 x}{1+x^{8}}$
(B) $\frac{2 x}{1+x^{4}}$
(C) $\frac{1}{1+x^{8}}$
(D) $\frac{1}{1+x^{6}}$
(E) None of these

Answers:
CBEBACDCBA
D B C A D C B A B D
C A

