What is Probability?

- American Heritage Dictionary Definition 3: "Math. A number expressing the likelihood of occurrence of a specific event, such as the ratio of the number of experimental results that would produce the event to the total number of results considered possible."
- AHD Definition 1 of Likelihood: "The state of being likely or probable; probability."

From the web

- "Probability is the name given to the branch of mathematics that deals with chance and how to predict whether a result is likely or unlikely." (hhtp://www.lean.co. ukddefault.asp?WCl=UniteWCU=275)
- "By probability, we generally mean the likelihood of a particular event occurring, given a particular set of circumstances. The probability of an event is generally expressed as a quantitative measurement." (hthp:/www.maps. jcu.edu. au/histstsats/quet/quet6.htm)
\qquad

Probability of an Event: Three Perspectives

- Classical ("A priori" or "theoretical")
- Empirical ("A posteriori" or "Frequentist")
- Subjective

Classical Probability ("A Priori" or "Theoretical")

- Situation: "experiment" or "random process" with n equally likely outcomes.
- E.g, toss a fair die: Six equally likely outcomes,
- $P(A)=m / n$, where A is satisfied by exactly m of the n outcomes
- E.g., toss a fair die; $\mathrm{A}=$ an odd number comes up -> $\mathrm{P}(\mathrm{A})=3 / 6$.

Pros and Cons of Classical Probability

- Conceptually simple for many situations
- Doesn't apply when outcomes are not equally likely.
- Doesn't apply when there are infinitely many outcomes

Empirical Probability ("A

 Posteriori" or "Frequentist")- $\mathrm{P}(\mathrm{A})=\lim _{\mathrm{n}-\mathrm{\rightarrow}}(\mathrm{~m} / \mathrm{n})$, where $\mathrm{n}=$ number of times process performed, $\mathrm{m}=$ number of times A is satisfied.
- E.g., toss a fair die; $\mathrm{A}=$ six lands up
- E.g., toss a die that is suspected of not being fair; $\mathrm{A}=$ six lands up.

Pros and Cons of Empirical Probability

- Covers more cases than classical.
- Intuitively agrees with classical when classical applies.
- Repeating the identical experiment an infinite number of times (sometimes even twice) is physically impossible.
- How large must n be to give a good approximation to the limit?

Subjective Probability

- A person's measure of belief that some given event will occur.
- E.g., P(the stock market will go up tomorrow).
- Needs to be "coherent" to be workable. (e.g., $\mathrm{P}($ stock market goes up tomorrow $)=.6$ and $\mathrm{P}($ stock market goes down tomorrow $)=.7$ are inconsistent.)

Pros and Cons of Subjective Probability

- Applicable in situations where other definitions are not.
- Fits intuitive sense of probability.
- Can be considered to extend classical.
- Can vary from individual to individual
- Requires "coherence" conditions; are people always that rational?

Unifying Perspective: Axiomatic Model of Probability

A function P from events to non-negative numbers satisfying:

1. $0 \leq \mathrm{P}(\mathrm{E}) \leq 1$
2. $\mathrm{P}(\mathrm{S})=1(\mathrm{~S}=$ certain event; sample space $)$
3. $P($ union of mutually exclusive events $)=$ sum of P of individual events
