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ABSTRACT

This paper summarizes some recent results on symplectic and energy-momentum conserving
time-stepping algorithms for Hamiltonian systems in nonlinear solid mechanics. To motivate con-
serving schemes a numerical example is provided in which a typical symplectic method is shown to
exhibit blow-up, i.e., instability. Some new analytical results on the observed instability are then
briefly presented. In particular, results are presented which show that within the context of a sim-
ple model problem the implicit mid-point rule (the prototypical symplectic implicit Runge-Kutta
method) is only conditionally stable while a conserving scheme is unconditionally (spectrally) stable.
An example 1s then given which shows that the approach used to construct the conserving algo-
rithm for the model problem generalizes to more complex systems such as nonlinear elastodynamics.
With regard to higher-order conserving schemes, a method by which fourth-order accuracy may be

obtained from a large class of second-order schemes is summarized.

1. INTRODUCTION.

In recent years there has been much interest in the long-term simulation of
nonlinear Hamiltonian systems. In particular, infinite-dimensional systems arising in
solid mechanics such as nonlinear elastodynamics, rods, and shells. From a numer-
ical analysis standpoint the design of time-stepping algorithms for these systems is
difficult since the issue of stiffness has to be addressed in the absence of numerical
dissipation (i.e., if a scheme is to inherit any of the key properties of a Hamiltonian
system it must be dissipationless). Given that stiffness is an issue and that one is
interested in long-term simulations it is then natural to search for implicit schemes
which are unconditionally stable and which preserve as much as possible the intrin-
sic properties of the underlying system. Namely, conservation laws such as that of
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energy and angular momentum (arising from symmetries in the Hamiltonian relative
to a group of transformations on the phase space) and the symplectic character of
the exact flow, both of which play a central role in the qualitative behavior of the
long-term dynamics. This leads one to consider two basic classes of implicit inte-
gration schemes for Hamiltonian systems: the so-called symplectic integrators which
preserve exactly the symplectic character of a Hamiltonian flow§ (for examples see [1]-
[5]) and the energy-momentum (or conserving) algorithms which by design preserve
the constants of motion; see [6]-[11].

In this paper we review some recent results on symplectic and conserving algo-
rithms. We first motivate the need for conserving schemes via a numerical example
from nonlinear elastodynamics. This example illustrates the disappointing results
produced by symplectic schemes, the implicit mid-point rule in particular. We then
briefly review some analytical results showing that the observed behavior is typi-
cal, i.e., that the implicit mid-point rule exhibits spurious solutions and is unstable
even for the simplest nonlinear system: Kepler’s problem. Within the context of
this model problem the cause of the instability is identified and it is shown that one
way to preclude instability is to use an alternative conserving algorithm. We then
show how the idea of a conserving algorithm may be generalized from the simple
model problem to a more complex system such as elastodynamics. In particular, we
show how to construct a conserving algorithm for general frame-invariant hyperelas-
tic models in nonlinear elasticity. Finally we discuss results on a general technique
by which fourth-order accuracy may be obtained from a large class of second-order
schemes.

2. MOTIVATION: A NUMERICAL EXAMPLE.

In this section we present a numerical example in which a symplectic method,
the implicit mid-point rule, is used to numerically integrate the equations of motion
for nonlinear elastodynamics, a typical infinite-dimensional Hamiltonian system. The
goal here is to motivate the need for alternative schemes.

2.1. Weak Formulation.

Let B C R"¥™ denote the reference placement of a continuum body, where
1 < ngim < 3 is the spatial dimension, with smooth boundary dB. In accordance
with a Lagrangian description of the motion material points are labeled throughout
by their position X € B in the reference placement and we consider the reference
boundary 0B to be partioned into disjoint subsets such that 0B = I, U I, with
I',NI, =0. We denote by ¢; : B — R"*™ an element of a t-parameter family
of deformations from the reference placement onto the current placement which for

T It can be shown that this is true only in the canonical case when the symplectic two-form is

constant; see [12].
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each t € Ry is an element of the configuration space
Q={pu:B = R"™ | J(¢¢) = det[De¢] > 0 and ¢, = @1}, (2.1)

where D(-) = 0(-)/0X and ¢y is specified data on I',. Let V = T'Q be the space of

admissible variations associated with the configuration space @, i.e.
V=A{n:B— R"" [n|r, =0}, (2.2)
then the weak form of balance of momentum at time ¢ € | takes the form

(me,m) + (DS, GraAD[]) = (fi,m) + (L.m)r  Vn eV, (2.3)

where &; is the prescribed nominal traction vector, f; is a prescribed body force
per unit reference volume, V; = ¢, is the material velocity field, &, = poV; is the
canonical momenta, pg: B — IR 4 is the reference density of the continuum body, and
Sy 1s the symmetric Piola-Kirchhoff or convected stress tensor defined in terms of a
stored energy function W(C(¢¢)) by

is the right Cauchy-Green deformation tensor. Here (- ,-) and (- ,-)r denote the
Lo—inner product on B and [, respectively, of scalars, vectors, or tensors depending
on the context and GRAD[-] denotes the gradient operator relative to a coordinate
system on the reference placement B C R"<™,

Here we note that for the pure Neumann problem (I, = () under equilibrated
loading the dynamics described by (2.3) possess the conservation laws of total linear
and angular momentum and total energy.

2.2. Mid-Point Approximation.

Consider a partition {t, }n=01,. . ~ of the time interval | of interest into non-
overlapping subintervals [t,, t,41] with At =¢,41 —t, >0 (n=0,1,...,N). Given
$n B — R""™ and m, : B — R"™ the algorithmic problem is to compute
@n+1 and 7,41 and generate a solution sequence {@y, Ty }n=0,1,. ~. To this end we
consider the following mid-point approximation to the weak form of the momentum

balance (2.3):

1

_<7rn—|—1 — Tp, 77> + <D(Pn—|—%57 GRAD["D

At (2.5a)

= <-fn—|—%7n> —I_ <tn—|—%7n>F \V/n S V?

along with the local relations

1
E[(PTHJ - Son] = Vn—l—% and ﬂ-n—l—% = povn—i—%? (256)
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where (+), 11 = 21()n + ()nt1] and the stress field is evaluated at the mid-point
configuration as

S =2VW(Cl(p,1)). (2.6)

Under the same conditions as in the exact case, the time-discrete dynamics
described by (2.5a,b) together with (2.6) possess the conservation laws of total linear
and angular momentum. Note that while the symplectic mid-point approximation
inherits the conservation laws of momentum from the underlying system it cannot in
general conserve energy since it is symplectic [13].

To complete the discretization we perform a standard spatial Galerkin projec-
tion of the time-discrete weak form into a finite-dimensional phase space P* C P.
It can be verified that for elastodynamics the Galerkin finite element projection pre-
serves the conservation properties of the time-discrete dynamics.

2.3. A Numerical Simulation.

For our example we consider the dynamics of an elastic L-shaped block subject
to no boundary restrictions with material response governed by a Saint Venant-
Kirchhoff elastic model. After an initial loading phase the body tumbles free of
external forces in the ambient space undergoing finite deformation accompanied by
large overall rotations and translations. The sequence of deformed shapes obtained
in the course of the simulation is shown in Figure 2.1 without any magnification of
the actual deformations.

FIGURE 2.1 Sequence of deformed shapes for the tumbling L-shaped block.

The plots shown in Figure 2.2 contain the time histories of the total energy and
the three components of the total angular momentum computed with the symplectic
midpoint-rule. The time history of the total linear momentum is not reported since
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FIGURE 2.2 Time histories of the total angular momentum and the total
energy computed with the symplectic mid-point rule.

this is trivially preserved by any consistent algorithm. The results shown in Figure
2.2 include computations with several step-sizes and demonstrates that solutions
computed with the symplectic mid-point rule may exhibit significant energy growth
for the larger time-step sizes which in long-term calculations leads to an eventual
blow-up of the algorithmic solution. This strongly suggests a loss of the unconditional
stability property of this method in the nonlinear regime.

3. ANALYSIS OF THE INSTABILITY PROBLEM.

In this section we review some analytical results pertaining to the observed in-
stability of the symplectic mid-point rule, the prototypical symplectic implicit Runge-
Kutta method. Within the context of a simple model problem we identify the cause
of the observed instability as spurious coupling between group and internal motions
and present two ways to avoid this phenomena. Our basic strategy here is to analyze
a system for which we can obtain exact algorithmic solutions (in particular, fixed
points) and then analyze the stability of these solutions. To this end, we consider
the simplest possible nonlinear system possessing the conservation laws of energy
and angular momentum: the classical problem of a particle moving in R* under the
influence of a central force field. The potential function is ultimately chosen to de-
scribe the situation typically found in spatial discretizations of infinite-dimensional
Hamiltonian systems. Namely, a wide frequency content with response dominated
by the lower spectrum. For details and proofs we refer the reader to [14].

3.1. Problem Formulation and Conservation Laws.

Consider a single particle of mass m > 0 in R® moving about a fixed center of
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force which will be taken as the origin of an inertial coordinate system and denote
the position of the particle by ¢ € R*. We restrict ourselves to conservative central
forces with potential V : R® — R where the potential is by necessity a function of
the radial distance |g| only. This problem has a well-known Hamiltonian structure
which we summarize below.

Let z = (¢",p")" € P = R® where p = mgq is the momenta conjugate to q
and define the Hamiltonian function H : P — R by

H(z) = o [pl* + V(lal) (31)

Hamilton’s equations for a motion ¢ — z(¢) € P then take the form

Vilal) (32)

The dynamics described by equations (3.2) give rise to a flow on the phase space P
with the following conservation laws. Define the angular momentum map J : P —
R® by J(z) = q@ x p. Then the Hamiltonian H and momentum map J are conserved
along solutions t — z(¢) € P of Hamilton’s equations in the sense that

d d
SH(=(t) =0 and —J(2(t) =0. (33)

3.2. Reduction and Stability.

Due to the presence of the conserved quantity J the dynamics may be formu-
lated on a reduced phase space P ¢ R?. In particular, the dynamics of the system
on P can be shown to be completely characterized by the evolution of a set of re-
duced variables (A, m)" € Pc R*and a moving frame. (In this case the dynamics
of the reduced variables is uncoupled from that of the moving frame.) The evolution
equations for the reduced variables are

A=om/m, } (3.4)
b= V) + |l X,

where g is the angular momentum of the system (constant). Note that since the
evolution of A and 7 completely determine the motion of the system stability can be
inferred from the reduced equations.

Let 2 = (\,7)" € P C R? and consider a fixed point 2* € P of the reduced
equations (3.4) given above. Clearly, the fixed point must be of the form 2* = (A\*,0)"
where \* is a stationary point of the amended potential V,,(\) = V(\) + |p]?/2mA2.
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Note that a fixed point of the reduced Hamiltonian flow on P corresponds to a steady
motion on the canonical phase space P and hence is called a relative equilibria. In
terms of the motion of the particle, the relative equilibria corresponds to a steady
circular orbit of the particle about the origin with radius |q| = A\*.

To examine the stability of the relative equilibria we linearize the reduced equa-
tions about the fixed point and examine the spectrum of the linearized t-advance
mapping A; = DF;(2*) where F; : P — P is the t-advance mapping for the reduced
dynamics. Spectral stability of the fixed point 2* = (\*,0)" € P requires that the
eigenvalues of Ay be on the unit circle in the complex plane. Since F} is a symplectic
map on P for each t € R and the reduced space is two-dimensional we have that
stability may be inferred from the trace of A;.

3.3. Mid-Point Approximation.

Approximation in the Canonical Space. Let | be the time interval of interest

and consider the equations of motion on P given in (3.2) with initial data z(0) =
zo. Given a partition {t,}Y_, of | such that t,41 —t, = At > 0, the algorithmic
problem is to compute z, 41 from given data z,, € P and generate a solution sequence
{zZn}n=0,1,., N where z, stands for an algorithmic approximation to z(t¢,). The mid-
point approximation to (3.2) is

dn+1 —qn = Atm_lpn_i_%,

Vi(lgns1l) (3.5)
Pnt1 —Pn = —At————q, ;1.

|qn—|—%|

[+ ()t

b=

where ()n+

1
2

Reduction and Stability. As in the exact case the momentum map J is pre-
served along any motion {z,}n,=01,. n defined by the mid-point algorithm (3.5).

Hence the discrete dynamics may be reduced to the phase space P C R?. Perform-
ing the reduction we then seek, as in the exact case, a fixed point 2* € P of the
reduced algorithmic equations. Stability is then determined by linearizing about the
fixed point and examining the eigenvalues of the amplification matrix. This leads to
the following results:

1) The mid-point scheme formulated on the canonical phase space P possesses an
algorithmic relative equilibria which depends on the time step.

2) The equilibria is only conditionally stable.

Approximation in the Reduced Space. To contrast the above results obtained

by reducing the mid-point approximation on P, we formulate the mid-point algo-
rithm directly on the reduced space P and address the question of stability for this
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formulation. The mid-point approximation to the reduced equations (3.4) is

/\n—l—l — /\n = Atm_lﬂ'n_i_l, }
g (3.6)

Tpnd+1l — Tp = —AtVl:(/\,H_%)

For this approximation we have the following results:
1) The scheme exactly preserves the fixed point in P.
2) The equilibria is unconditionally (spectrally) stable.

3.4. Energy-Momentum Approximation.
Approximation in the Canonical Space. As before, let z,, € P denote an algo-

rithmic approximation to z(t,) and as a point of departure consider the following
mid-point approximation to the equations of motion on P:

dn+1 — 4n = At”ﬁ‘_lpn 1,
N o } (3.7)
Pnt1 — Pn = —AL0q, 1,
where 0 € R is an algorithmic parameter and as usual ()n—i—é = %[()n + ()n+1]-

Here we note that the above algorithm preserves the momentum map J : P — R®
for any 0 € R. We now proceed to determine o such that the Hamiltonian (i.e.,
the total energy) is conserved along any motion {z,}n=0,1,. ~ generated by (3.7).
Recall, for the system at hand the Hamiltonian H : P — R is separable, of the form
H(z) = K(p) + V(|q|) where K(p) = |p|?/2m is the kinetic energy of the particle.
In the interval [t,,t,41] the change in kinetic energy is

- - I _
K(pnt1) = K(pa) = 5m Ylpns1? = [pal?),
= m_lpn+§ (Pnt1 — Pan)- (3.8)

Substituting the algorithmic equations (3.7) into the above identity yields

. . 1
K(pns1) = K(pn) = =50(lgnnl” = Igal’). (3.9)

The Hamiltonian is said to be conserved along a motion {2, }n=01,. . ~ if H(2nt1) =
H(z,), ¥n > 0. This requires K(pn+1) — K(pn) = —[V(|gn+1]) — V(|gn|)] which
in view of (3.9) is satisfied by setting

1 V(|qn+1|) - V(|qn|)
slgnsil + 1) lgns1l = lgal

g =

(3.10)
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Hence the discrete dynamics described by (3.7) together with (3.10) give rise to
an algorithmic flow on P which preserves exactly the momentum map J and the
Hamiltonian H.

Reduction and Stability. Due to the presence of the conserved quantity J the
discrete dynamics on P defined by the energy-momentum algorithm (3.7) together
with (3.10) may be reduced to the phase space P Cc R% Carrying out an analysis
identical to that for the mid-point rule yields the following results:

1) The scheme exactly preserves the relative equilibria up to group motions, i.e.
preserves the fixed point in P.

2) The equilibria is unconditionally (spectrally) stable.

Approximation in the Reduced Space. The energy-momentum approximation
to the reduced equations (3.4) is

Apdl — Ap = Atm_lﬂ'n 1,
i 2 } (3.11)

g1 — Tn = —Ato,

where 0 = [V, (An+1) — Vu(An)]/[An+1 — An]. For this approximation we have the
following results:

1) The scheme exactly preserves the fixed point in P.
2) The equilibria is unconditionally (spectrally) stable.

3.5. Numerical Verification.

In this section we present a numerical example to verify the results obtained
in the preceding sections. Specifically, we consider the conservative central force
problem for a particle of unit mass and radial force potential V : Ry — R of the
form

1 1
Vilg|) = §KE2 where FE = §(|q|2 —1). (3.12)

For the ‘stiff’ case we take K = 10° and take as the amplitude of the angular mo-
mentum g = 10.

Mid-Point Approximations. To verify the result of the stability analysis of
the mid-point algorithm on P we have plotted in Figure 3.1 (half) the trace of the
amplification matrix A, associated with the fixed point (i.e. the algorithmic rel-
ative equilibria) 2* versus 25 where 2p = pAt/m(A\*)? is the sampling frequency
associated with group motions. Since det[Aa¢] = 1 the stability condition for the
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algorithmic equilibria (i.e., eigenvalues on unit circle) requires | tr[Aa¢]| < 1. As the
plot shows, this stability condition is violated for 2y > 2. At the point 25 ~ 2 the
eigenvalues of the amplification matrix experience a bifurcation from two complex-
conjugate roots with unit modulus into two real roots one of which has modulus
greater than unity.

trA)/2
=

o
[u
N
w

FIGURE 3.1. Trace (up to a factor of one-half) of the amplification matrix at the
relative equilibria for the reduced mid-point algorithm.

For three values of At we integrated the equations of motion on P using (3.5)
and plotted the reduced trajectories in P. Figures 3.2a-c show the fixed points in
P (i.e. the algorithmic relative equilibria) and neighboring solutions which were
obtained by specifying initial conditions slightly away from the fixed points. Also
shown are plots of the total energy versus time for each trajectory. For the plots of
the trajectories in P we have scaled the reduced momenta 7 by a factor of 1/vVmK
to balance the scaling between the 7- and A-axes.

Note the dependence of the location of the fixed point 2* on At. In Figure 3.2a
for At = .01 we have 2* = (1.0013,0)". In Figure 3.2¢ for At = .02 the fixed point
has moved to 2* = (1.0050,0)". Also note the size of the stability region in Figure
3.2c. In this figure, curves 1-3 show the fixed point and neighboring solutions which
appear qualitatively correct. Slightly further away from the fixed point we have curve
4 in which we begin to see corners in the trajectory. Finally, curve 5 shows a solution
which quickly leaves the neighborhood of the fixed point and becomes a spurious
solution. Figure 3.3 shows the spurious solution which results if we proceed with the
computations along curve 5.

Further increases in At yield similar behavior, i.e., the fixed point continues to
move to the right and the stability region continues to shrink. By At = .13 (£25 ~ 1)
the stability region for the fixed point cannot be resolved due to the precision of the
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FIGURE 3.2. Reduced phase trajectories and energy plots for the mid-point algo-
rithm on P for (a) At=.01 (2r =~ .1), (b) At = .015 (2 & .15), and (c) At = .02
(2r ~ .2). (o) denotes the initial condition.
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computations. The fixed point itself can be maintained only for a few time steps
before roundoff and tolerance errors drive the solution out of the stability region.
For some value of {2, between 1 and 2 the fixed point vanishes, i.e., it is lost after
the first time step.

Figure 3.4 shows the result of integrating the reduced equations of motion on
P using (3.6). In this case the solution curves are independent of the time step so
that we show only one plot. Here we note that the fixed point 2* = (1.0001,0)" of
the reduced dynamics is exactly preserved and that the fixed point does not have a
limited stability region.
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FIGURE 3.3. Spurious solution obtained by continuing computations along curve 5
of Figure 3.2. (o) denotes the initial condition.
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FIGURE 3.4. Phase trajectories and energy plots for the mid-point algorithm on P.
Note that the trajectories are independent of A¢. (o) denotes the initial condition.

Energy-Momentum Approximations. The results of the stability analysis of the

energy-momentum algorithm on P are verified in Figure 3.5 where we have plotted
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FIGURE 3.6. Reduced phase trajectories and energy plots for the energy-momentum
algorithm on P. Note that the trajectories are independent of A¢. (e) denotes the
initial condition.

(half) the trace of the amplification matrix Aa¢ of the fixed point (i.e. the algorithmic
relative equilibria) versus §2x. For this case we also have det[Aa;] = 1 so that the
stability condition becomes |1 tr[Aa¢]| < 1. As the plot shows, the stability condition

is satisfied for all {2 > 0. The only exception is {2z = 2 where we have |% tr[}iAtH =1.
At this point, however, we have Axy = —1 so that stability still holds.

For At = .02 we integrated the equations of motion on P using (3.7) together
with (3.10) and plotted reduced trajectories in P. Figure 3.6 shows the fixed point
and neighboring solutions as well as the energy plots for each trajectory. For the
energy-momentum algorithm the location of the fixed point 2* = (1.0001,0)" is
exact and is independent of At hence we show only one plot. Also note that this
algorithm is not seen to have a limited stability region which decreases with At as
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FIGURE 3.7. Phase trajectories and energy plots for the energy-momentum algo-
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condition.

does the mid-point rule on P.

Figure 3.7 shows the result of integrating the reduced equations of motion on
P using (3.11). Again, the trajectories are independent of the time step so that we
show only one plot. As with the formulation on P, the fixed point 2* = (1.0001,0)"
of the reduced dynamics is exactly preserved and does not have a limited stability
region. Note that the trajectories in this case are identical to those in Figure 3.6
which were obtained using the formulation on P.

4. GENERALIZATIONS.

In this section we show that the approach outlined above for the construction
of exact energy-momentum conserving algorithms generalizes to more complicated
systems such as nonlinear elastodynamics. (In fact, the approach generalizes to
systems such as nonlinear rods and shells; see [10-11].) In particular, we outline
the construction of a conserving algorithm for general frame-invariant hyperelastic
models in nonlinear elasticity. For more details see [15].

As a point of departure consider the following implicit mid-point approximation
to the weak form of balance of momentum

1
g\ Tntt = Ty M)+ (D@ g 1 S, GRAD[R]) (4.1a)
= <.fn—|—%7n> + <tn—|—%7n>F V’? € V?
along with the local relations
1
E[(PTHJ - Son] = Vn—l—% and ﬂ-n—l—% = povn—i—%? (416)

where (), 41 = 21(-)n 4 ()n+1] and the stress field S is left as a completely arbitrary
symmetric tensor field on B.
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Recall that discrete momentum conservation follows from the symmetry of S
independent of any constitutive relation. Hence for any symmetric field S the algo-
rithm in (4.1a) inherits the conservation laws of linear and angular momentum from
the underlying system. Given a constitutive relation for the continuum problem of
the form (2.4) our goal is to construct an algorithmic constitutive relation, consistent
with the continuum case, which leads to discrete energy conservation.

Choosing 7 = @41 — n in the algorithmic weak form (4.1a) and employing
relations (4.1b) one arrives at the conclusion that discrete energy conservation is
achieved by enforcing the local condition

1
2
If we define the average deformation tensor C, 41 as

Cry1r = 3(Crsr + Cn), (4.3)

NI

and denote by I the identity mapping on the space of symmetric second-order tensors,

then a consistent approximation to a general hyperelastic constitutive relation which
satisfies (4.2) is

W(Cri1) — W(Chr) M.
|Cn—|—1 - Cn|

S=2I-M®M) VW(C, 1)+2 (4.4)

where M = Cpy1 — C,,/|Crt1 — Cy|. A simple analysis shows that (4.4) is only a
At*-pertubation of the mid-point approximation (2.6) and is well-defined in the limit
|Crt1— Cr| — 0. In addition, for quadratic strain-energy functions such as the Saint
Venant-Kirchhoff model the above expression reduces to the result given in [9]. Hence
the algorithm given in (4.1a,b) together with the algorithmic constitutive equation
(4.4) comprise an exact energy and momentum conserving scheme for general models
in nonlinear elasticity.

5. HIGHER ORDER ACCURATE SCHEMES.

Up to now the energy-momentum algorithms we have discussed have been
second-order accurate. Here we describe a time sub-stepping procedure which, for
a fairly general class of second-order accurate algorithms, achieves fourth-order ac-
curacy while retaining the stability and conservation properties of the underlying
second-order method.

The proposed procedure to convert a wide class of second-order accurate time-
stepping methods into fourth-order accurate methods is remarkably simple. Given a
second-order accurate scheme, the procedure requires the execution of three fractional
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----- u -----> time
tN_/tnﬂ tn+a

FIGURE 5.1. To advance by one fourth-order accurate time step re-
quires the successive execution of three fractional steps with the second-order
method.

steps of sizes aAt, (1 — 2a)At and aAt, respectively, in order to advance one time
step of size At. An illustration of the technique is given in Figure 5.1.
The constant « is independent of the time-stepping method to which the procedure is
applied. Its numerical value and the precise statement of this result are summarized
in the following.

Let f be a smooth function on R" x [0,T], where [0,T] is a time interval of
interest and consider the general initial value problem

y(t) = fy(t),1), }

5.1
y|t:0 = Yo ( )

Suppose a given algorithm to solve the initial value problem (5.1) is of the form

Ynt+1 — Yn = At.f(ynv yn—l—lvtnatn—l—l)

2 (5.2)
+ BA[f (Ynt1,tnt1) — Fo(Yn,tn)l,

where the subscripts (+),, and (+),41 refer to algorithmic approximations of y(¢, ) and
Y(tn+1), respectively, B is a diagonal matrix of free algorithmic parameters (for many
methods B = 0) and f(Yn, Yn+1,tn, tnt1) satisties the following conditions:

fly,y.t.t) = f(y.t), Vy,t;}

f(y7w787t) = f(w7y7t7 8)'

Then the method can be transformed into a fourth-order accurate method by using
the mentioned sub-stepping procedure with

]_ 1 1
oz:§<2—|—2_§—|—2§>.

Successive applications of a second-order method with different time-step sizes
to attain fourth-order accuracy in a macro step yields a convenient scheme with a
number of attractive features over conventional fourth-order accurate algorithms. For
more details see [16].
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6. CLOSING REMARKS.

We have provided a review of recent results on symplectic and conserving time-
stepping algorithms for Hamiltonian systems, in particular, stiff systems with sym-
metry. Based on numerical evidence within the context of relatively complex systems
and analytical evidence within the context of a simple model problem we conclude
that seemingly ideal symplectic schemes such as the Gauss family of algebraically
stable implicit Runge-Kutta methods are not suitable for the systems of interest.
In particular, these algorithms lose their effectiveness as implicit schemes since they
exhibit spurious solutions and/or blow-up when high frequencies are ignored in the
presence of large group motions. Within the context of a simple model problem re-
cent results show that the cause of the instability is an artificial coupling between
group motions and internal motions. Results show that instability may be precluded
by symplectic reduction or by alternative conserving schemes, the latter being the
most practical solution in general.
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