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Abstract Ideal knots are curves that maximize the scale invariant ratio 
of thickness to length. Here we present a simple argument to establish the 
existence of ideal knots for each knot type and each isotopy class and show 
that they are C1 '1 curves. 
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1 Introduction 

Any continuously differentiable, non-self-intersecting curve can be thickened 
normal to itself to produce a non-self-intersecting tube of constant radius 
centered on the curve. If the curve is straight there is no upper bound on the 
tube radius, but for non-straight curves there is a critical value of the radius 
above which the tube intersects itself. This critical value is a geometrical 
property of the curve called its thickness or normal injectivity radius [1],[2]. 
A natural optimization problem is to find the thickest curve of prescribed 
length amongst those of a given knot type. The thickness of such a curve 
is an intrinsic property of the knot, and the curve itself provides a certain 
ideal shape or representation of the knot type [3]. (Notice that some authors 
prefer the term tight over ideal) Approximations of ideal shapes in this sense 
have been found via a series of computer experiments [4], [5]. These shapes 
were seen to have intriguing physical features, and even a correspondence 
to time-averaged shapes of knotted DNA molecules in solution [3]-[6]. 

Ideal shapes of knots can be defined in various different ways. For exam­
ple, rather than fix length and maximize thickness over a prescribed class 
of knotted curves [7], one may instead fix thickness and minimize length [8]. 
(For other formulations and related problems see Section 4.) These equiva­
lent definitions capture the physical idea that, when a simple knot in a piece 
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of rope is pulled tight, it always achieves a geometrical configuration with a 
minimum length of rope within the knot. Such a configuration corresponds 
to an ideal shape; the essential quantity being optimized is a scale invariant 
ratio between thickness and length. Intuition suggests that there should be 
at least one such shape depending on the complexity of a given knot. 

In this article we prove the existence of ideal shapes for each knot type; 
indeed, for each knot isotopy class. The basic problem we address is that 
of maximizing the thickness functional over sets of C1 curves of prescribed 
length and topology For this purpose, we use the observation of [7] that for 
smooth curves 7, the thickness or normal injectivity radius can be identified 
with the global radius of curvature functional 

Z\[7] = inf R{x,y,z) 
x^y^z^x 

where R(x, y,z) denotes the radius of the circle through the three distinct 
points x, y and z. This functional can be defined for parameterized curves 
in a natural way; for example, as in [8]. Using such a definition we show that 
A[j] is bounded from above and upper semi-continuous on the set of unit 
length curves that are parameterized by arclength and satisfy A[y] > 9 > 0. 
Because this set and any of its subsets defined by prescribing knot type or 
isotopy class is closed under convergence in the C°-norm, we are able to 
exploit standard direct methods and obtain existence of curves of maximal 
thickness for each knot type and isotopy class. We find furthermore that 
these ideal shapes are actually in the class of C1 ,1 curves, which means that 
their unit tangent fields are Lipschitz continuous. 

Similar existence results were recently established in [8] by different tech­
niques. The basic problem studied there was that of minimizing general 
energy functionals over sets of framed curves subject to a lower bound on 
thickness. That framework covers not only the ideal knot problem (where 
the energy being minimized is the arclength functional), but also various 
other problems in elastic rod theories which are motivated, for example, 
by the optimal packing of biological filaments [9],[10]. Here we give a more 
succinct existence proof for ideal shapes using a different variational princi­
ple. Our approach is similar to that used in the proof of Tonnelli's theorem 
on the existence of shortest geodesies in a given homotopy class. Moreover, 
after our work was completed we were made aware of [11], which contains 
arguments related to those here. 

The presentation is structured as follows. In Section 2 we define and 
outline various properties of the global radius of curvature functional A[y] 
as discussed above. In Section 3 we provide a variational characterization 
of ideal shapes and establish their existence as C1 , 1 curves. In Section 4 we 
discuss alternative variational formulations for ideal shapes and extend our 
existence result to cover a class of optimal packing problems as considered 
in [9]. 



Existence of Ideal Knots 125 

2 Global curvature 

Our definition of ideal shapes is based on the global curvature functions 
introduced in [7]. Here we define these functions and summarize some of 
their properties. With the exception of Lemmas 4 and 5, results similar to 
those below are detailed in [8]. 

2.1 Preliminaries 

Throughout our developments we consider closed curves 7 belonging to one 
or more of the sets C°(S,R3), C ^ R 3 ) or 

Q = {1eC1(S,R3)\ |7'(s)| = i, seS} 

where S is the circle with unit perimeter; in particular, S = R/Z. A curve 
7 will be called simple if it has no self-intersections, that is, if the map 
7 : S —> R3 is injective. Otherwise, the curve 7 will be called non-simple. In 
this case there exist pairs s,t G S (s ^ i) for which 7(5) = j(t). Any such 
pair will be called a double point of 7. Since Q C C ^ R 3 ) c C°(S,R3) we 
use the usual C° and C1 topologies when discussing limits and continuity 
in Q. 

We use I • I to denote the (intrinsic) distance between two points in 
R3 or S depending on the context. To denote the angle between two non­
zero vectors u and v in R3 we use $(u,v) G [0,7r]. The distance between a 
point x G R3 and a subset E C R3 will be denoted by dist(x, E) and the 
diameter of E will be denoted by diam(27). For any r > 0 we define open 
neighborhoods of x and E by 

Br(x) = {y G R3 I \y - x\ < r} and Br(E) = {y G R3 | dist(y, E) < r}. 

When E is the image of a curve 7 G Q, we call Br(E) = Br(j) the 
tubular neighborhood of 7 with radius r > 0. We say that Br(j) is non-self-
intersecting or regular if the closest-point projection map II1 : Br(7) - > 7 
is single-valued and continuous. That is to say, for any x G B r(7) there is 
exactly one s(x) G S such that IJ1{x) := j(s(x)) satisfies 

dist(x,7) = \j(s(x)) - x | , 

and II1{x) is a continuous function of x G Br(j). The existence of such 
non-self-intersecting tubular neighborhoods is guaranteed by the tubular 
neighborhood theorem [12]. For further justification of this notion of non-
self-intersecting see the discussion following Lemma 2. 
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2.2 Global radius of curvature functions 

Following [7], [8] we define the global radius of curvature functions pc and 
A for parameterized space curves 7 as follows. 

Definition 1 Let 7 : S —> R3. Then the global radius of curvature of 7 at 
the point j(s), s £ S, is given by 

pab](s) := inf R(>y(s),j(a),7(r)), (1) 
cr,reS\{s} 

and we denote its infimum by 

A\i\ := inf pG[7](s). (2) 

Here R(x, y, z) > 0 is the radius of the smallest circle containing x, ?/ and z. 
When x, y and z are non-collinear there is a unique circle passing through 
them and 

R(x,y,z) = . JX~yl ^ (3) 
\2sm[$(x-z,y-z)]\ 

which implies that R(x,y,z) is continuous at non-collinear points. When 
x, y and z are collinear and distinct there is no circle passing through all 
three points and R(x,yyz) is defined to be infinite. However, if two points 
coincide, say x = z or y = z, then there are many circles through the three 
points and R(x1y1z) is the smallest possible radius; namely, the distance 
\x — y\/2. A straightforward consequence of Definition 1 is: 

Lemma 1 Consider any 7 e C°(S,R3). If'7 has a double point at the pair 
s,t e S (s ^ t), then PG[I]{S) = PG[l){t) — 0. If A[y] > 0, then 7 is simple. 

The functional ^[7] is invariant under various transformations of the 
curve 7. Prom the definition of R(x,y,z) we deduce that ^[7] is invariant 
under translations, rotations and reflections of 7. Moreover, ^[7] is invari­
ant under reparameterization in these sense that A[y o n] = A[y] for any 
bijection TT : S —> S. The functional A[y] is also covariant under scaling in 
the sense that ^\[A7] = XA[y] for any A > 0. 

2.3 Geometric interpretations 

When a closed curve 7 is both simple and smooth, the functions PG[I] 
and ^[7] are known to be related to the standard local radius of curvature 
p[y], and to the thickness or normal injectivity radius Injfy] as discussed in 
Section 1. In particular, 0 < PG[I]{S) ^ pfrK5) f° r all 5 G 5 and A[y] = 
Inj[7] [7]. Here we generalize these ideas to curves in the set Q. The first 
result is: 
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Lemma 2 Consider a curve 7 G Q and for any s £ S let 1)0(7(5), 7 ;(s)) 
denote the open planar disk of radius 9 > 0 centered at 7(5) and contained 
in the plane perpendicular to j'(s), let C(s, 9) denote the circular perimeter 
of De('j(s)^/(s)), and let 

M(sy9) = (J Be(z) 
zec(s,e) 

(see Figure la). Then 

(i) -ynM{s,6) = QforallseSiffA['y]>0, 

(ii) diam(7) > 20 if A[j] > 9, 

(hi) Be(j) is regular iff A[j] > 9, 

(iv) 177 has the property n~1(^y(s)) f) £0(7) = De(j(s),jf(s)) if £0(7) is 
regular. 

Y (<*)'. 

^ Y ( s ) 

(b) 

Fig. 1 Two dimensional illustration of (a) the set M(s,9) denned in Lemma 2 
and (b) the set P defined in the proof of Lemma 3. 

The above results follow from the definitions of A[j]y M(s, 9) and -8^(7). 
Item (i) implies that if A[y] > 9, then an open ball of radius 9 placed tangent 
at any point 7(5) may be rotated around the tangent vector j'(s) without 
intersecting the curve. On the other hand, if ^[7] < 9, then there is a point 
on the curve about which a similar rotation of such a ball could not be 
effected. Thus ^[7] is the radius of the largest ball that can be rotated 
tangentially about every point of a curve 7 without intersecting it. 

According to item (ii) the inequality A[y] > 9 imposes a lower bound 
on the overall size of 7. Prom this result we conclude that A[y] must be 
bounded on Q. In particular, because the diameter of curves in Q cannot 
exceed one-half their (unit) length, we find that A[j] cannot exceed one-
fourth this length. 

Items (hi) and (iv) imply that the regularity of the tubular neighborhood 
£0(7) is equivalent to the condition ^[7] > 9, and that Bo(j) is the union 

(a) 
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of disjoint disks DQ(J(S),Y(S))- Since each point x G £0(7) is in a unique 
disk De(j(s),Y(s)) normal to the curve, we deduce that £0(7) has the 
structure of a uniform tube of radius 9 centered on 7. Moreover, according 
to item (iii), any tubular neighborhood of radius larger than A[j] would 
fail to have this structure. Thus A[j] may be identified with the notion of 
normal injectivity radius as discussed in [1],[2]. 

The next result shows that a positive lower bound on A[y) imposes a 
certain amount of regularity on a curve 7. 

Lemma 3 Consider a curve 7 G Q and suppose A[j) > 9 > 0. Then 7 
has a Lipschitz continuous tangent Y with Lipschitz constant 9~l, that is7 

7GC 1 ' 1 (S ,R 3 ) and 

\Y(s) - 7'(cr)l < 9-x\s - a\ Vs,a G 5. (4) 

The condition 7 G C1'1(Sr, R3) implies that the standard local curvature of 
7 exists almost everywhere, and (4) implies that it is bounded by 9~l. 

Proof The above result follows from the fact that, when \s — a\ is sufficiently 
small, for example |s — cr\ < 0/2, the arc of 7 between 7(5) and 7(0*) must 
be contained in (the closure of) the pod-shaped intersection P of all open 
balls of radius 9 containing 7(5) and 7(0") on their boundaries as illustrated 
in Figure lb. This implies that the tangent vector Y(s) ls contained in the 
cone with vertex 7(5), axis C and opening angle a, where C is parallel to the 
chord 7(0") —7(5) and a is given by sin(a/2) = \^(cr) — ^y(s)\/29. Since Y(°~) 
is in a similar cone with the same opening angle we conclude that (4) holds 
for the case when \s — a\ < 9/2. The result for all 5, a G S is obtained by 
partitioning an arbitrary interval into a finite number of sufficiently small 
intervals. • 

From the proof of Lemma 3 and the a-priori estimate (4) we deduce 
that, when \s — <J\ is sufficiently small, the arc of curve between 7(5) and 
7(0-) has a unit tangent field that is nearly parallel to the chord between 
these points. This leads to the following uniform bound: 

Lemma 4 Let 9 > 0 be given. Then there is a constant C G (0,1) such that 
for any 7 G Q with A[y] > 9 we have 

C | S - ( T | < | 7 ( S ) - 7 ( * ) | < | S - * I (5) 

for any s,a G S with \s — a\ < 9/2. 

2.4 Continuity properties of A[y] 

Here we outline various continuity properties of the functional ^[7] for 
curves 7 G Q. While it is natural to consider the C1 topology on Q, we 
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opt for generality and establish these properties under the C° topology by 
exploiting Lemmas 3 and 4. 

Our first result states that the subset of curves satisfying A[y] > 9 > 0 is 
closed under C° convergence in Q. Moreover, A[j] is upper semi-continuous 
with respect to C° convergence in this set. 

Lemma 5 Let {jn} C Q be a sequence of curves such that A[yn] > 9 > 0 
for alln GN and suppose 7 n —» 7 in C°(S, R3). Then the limit 7 is a simple 
curve in Q and A[j] > 9. Consequently, if A{yn] —» r}, then A[y] > rj. 

Proof The conclusion that 7 G Q follows from the fact that {jn} is an 
equicontinuous and uniformly bounded family of functions in C1(5,R3). In 
particular, equicontinuity follows from Lemma 3 since 

\ln{s) - Jn(0-)\ < \s-a\, Vs,0-£S 
(o) 

l 7 ; ( a ) - 7 » l < r 1 | * - a | , Vs,a € S, 

and uniform boundedness follows from the conditions j n -» 7 in C°(£,R3) 
and |7^(s)| = 1. Thus we may extract a subsequence {7^} that converges 
in C1(5,R3) to a curve /1; moreover, \i G Q since | / / (s) | — 1. Since j n —> 7 
in C° and 7nj. —> /x in C 1 we must have 7 = // by uniqueness of limits in 
C°. Thus 7 is in Q. 

The fact that 7 is simple follows from the observation that it is the C1-
limit of a subsequence {7n j} where, by Lemma 2, each j n j has a regular 
tubular neighborhood of radius 9 > 0. More explicitly, we may first pass 
to the limit in (5) and deduce that, in any small interval \s — a\ < 9/2, 
the arc of curve between 7(5) and j(cr) must be simple. Next, we suppose 
for contradiction that there exist parameters |si — 531 > 9/2 such that 
7(«5i) = 7(53) = z. By (5) again we can find parameters $2 and 54 close 
to s\ and 83, respectively, such that s\ < S2 < 53 < 54, 7(82) / z and 
7(54) 7̂  z. Let 2r = min{|7(s2) — z\, 17(54) — z\,9} and consider the open 
ball Br(z). Since j n —» 7 in C° we find that 7n(si) and 7n(<S3) are inside 
B r(z) while 7n($2) a n ( i 7n(^4) are outside for all n sufficiently large. Since 
each 7 n is a simple closed curve it must have at least four intersections with 
the sphere dBr(z). This contradicts the lower bound A[yn] > 9. Thus the 
limit curve 7 must be simple. 

The limit curve 7 G Q must also satisfy the bound A[y] > 9. Otherwise, 
we can find three non-collinear points 7(0^) (i = 1,2,3) with the property 
that #(7(0-1),7(0^2),7(03)) < 9. Because 7n -^ 7 in C° and the function R 
is continuous at non-collinear points we would then conclude that A[jn] < 9 
for n sufficiently large, which is a contradiction. Thus the limit curve must 
satisfy ^[7] > 9. Moreover, if A[yn] —> 77, then for any e > Owe have 
A[yn] > rj — e for all n sufficiently large. By the same arguments as before we 
find that the limit curve must satisfy the bound ^[7] > 77 — e, which implies 
A[y] >rf by the arbitrariness of e. This establishes the upper semicontinuity 
of the functional A. D 
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In our application we will consider curves in Q that are in a fixed isotopy 
class in the following sense: 

Definition 2 Two continuous closed curves K\,K2 C R3 are isotonic, de­
noted as K\ ~ K2, if there are open neighborhoods N\ of K\, N2 of K2, 
and a continuous mapping <f> : N\ x [0,1] —• R3 such that <£(•, r) is a home-
omorphism for each r G [0,1], $(x,0) = x for all x G N\, $(N\, 1) = N2, 
and $ ( i f i , l ) = K2. 

Roughly speaking, two curves are in the same isotopy class if one can be 
continuously deformed onto the other. 

Isotopy classes provide a notion of equivalence for knotted curves. In par­
ticular, if two curves are isotopic, they have the same knot type. However, 
the converse is not necessarily true. Here we take knot type to mean the 
weakest possible notion of equivalence as defined, for example, by homeo-
morphisms which are not necessarily homotopic to the identity map or 
orientation-preserving. In this sense a trefoil and its mirror image are of 
the same knot type, but they are not in the same isotopy class. To indicate 
that two curves K\ and K2 are of the same knot type we use the notation 
Kx ~ K2. 

The next result states that a C°-convergent sequence of curves {7n} C Q 
subject to a uniform, positive lower bound on A[jn] cannot change isotopy 
class (a fortiori cannot change knot type) for all sufficiently large n. This 
will allow us to control the topology of limits. 

Lemma 6 Let {7n} C Q be a sequence of curves such that 

(i) A[ln) > 9 > 0, V n e N ; 

(ii) 7n -> 7 in C°{S, M3) as n -> 00. 

Then 7 ~ j n for all n sufficiently large. 

Proof Prom Lemma 5 we immediately deduce that the limit 7 is a simple 
curve in Q and ^[7] > 9. In particular, the proof of Lemma 5 shows that 
{7n} actually converges to 7 in the C1 sense. The construction of the isotopy 
map # between 7 and 7n for all n sufficiently large then follows because the 
closest-point projection onto the image of j n restricted to 7 is bijective. • 

3 Variational formulation and main result 

Using the global radius of curvature functional A[y] we can formulate vari­
ational problems to describe ideal shapes in Q. In particular, let Qk be the 
subset of Q consisting of all curves of the same isotopy class as a given 
simple curve k G Q, and let Q°k be the subset of all curves of the same knot 
type as &, that is 

& = { 7 6 C ' ( S , t 3 ) | 7(0) = 0, 7 ~ f c , |7'(s)| = l, seS}, 

Q ^ b e C ^ M 3 ) ! 7(0) = 0, 7 ~ f c , | 7 ' ( s ) | = l, sGS} 
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where, without loss of generality, we fix 7(0) = 0 to eliminate rigid trans­
lations. We consider the problems of finding curves 7* G Qk and 7° G Q°k 

such that 
4[7*] = sup A[j] and A[j°] = sup A[j]. (7) 

7€Q f c 7 € Q ° 

Any solution 7* of the first problem is an ideal shape for the isotopy class 
represented by fc, and any solution 7^ of the second is an ideal shape for 
the knot type. By Lemma 2, these ideal shapes admit the thickest, regular 
tubular neighborhood within their isotopy class and knot type. Our main 
existence result is: 

Theorem 1 For any simple curve k G Q the maximization problems defined 
in (7) have solutions 7* G Qk and 7J G S j . Every solution to either problem 
is actually inChl(S,R3). 

Proof Since every curve 7 G Q has unit length the functional A : Q —> R 
is bounded by Lemma 2(ii). Thus the suprema rjk = supQfc A[y] and rjk = 
supgo A[y] considered in (7) are finite. 

Consider first the problem in (7)i and let {7n} C Qk be any maximizing 
sequence such that A[yn} —» rjk- Without loss of generality we may suppose 
that A[jn] > A[k] > 0 where the strict inequality follows from the fact that 
k is simple. As in the proof of Lemma 5, we claim the sequence {7n} is an 
equicontinuous family of functions in Cx(5, R3). In particular, this sequence 
satisfies the bounds in (6) with 6 — A[k] > 0. Because the sequence is 
also uniformly bounded in C1(5,E3) we may extract a subsequence that 
converges in the C1 sense to a curve 7*. This convergence implies that 
|7 :(5) | = land7*(0) = 0. 

Prom Lemma 5 we find that 7* is a simple curve. Furthermore, from 
Lemma 6 we deduce that 7* G Qk- In particular, 7* is isotopic to 7 n for 
all n sufficiently large, and each j n is by definition isotopic to k. By the 
semicontinuity of A we have A[y*] > rjk, which implies ^[7*] = rjk since 
rjk is the supremum. Thus 7* is an ideal shape for the knot isotopy class 
represented by k. The C1 ,1 regularity of 7* follows from Lemma 3. 

The same arguments lead to similar results for problem (7)2- In partic­
ular, let {7^} C Q° be any maximizing sequence such that A{y%\ —> r^. As 
before, this sequence is equicontinuous and uniformly bounded in Cx(5, R3) 
and we may extract a subsequence that converges in the C1 sense to a curve 
7*. The conclusion that 7° G Q°k follows from the fact that, by Lemma 6, 7^ 
is isotopic to 7^ for all n sufficiently large (thus the isotopy class eventually 
becomes constant along the sequence), and each 7^ is by definition of the 
same knot type as k. Prom the semicontinuity of A we deduce ^[7^] = r)%, 
which implies that 7^ is an ideal shape for the knot type represented by fc, 
and the C1 , 1 regularity of 7^ follows from Lemma 3. D 

Thus for every knot type and isotopy class there exists an ideal shape in 
Q whose regularity is at least C1 '1(5,R3). Similar results are presented in 
[8],[11]. 
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The above results imply the existence of maximizers for each handedness 
of any knot that is not isotopic to its mirror image; for example, a trefoil. 
Furthermore, regardless of its handedness every maximizer for such a knot 
must have the same thickness since A[j] is invariant under reflections. 

Because regularity follows directly from Lemma 3, and does not rely on 
any extremal properties, one may speculate that ideal shapes are actually 
smoother than C1 '1. However, numerical data presented in [7] suggests that 
the ideal shapes of some composite knots are not C2 . Similarly, examples 
presented in [11] show that the ideal configurations of some linked (but 
unknotted) curves are also not C2. Thus the C1?1 regularity established in 
the above result may be quite sharp. 

The variational characterization (7) can be exploited to derive necessary 
conditions for a knotted curve to be ideal. For example, in [7] it was shown 
that a smooth curve can be ideal only if its global radius of curvature 
function pc is constant and minimal on every non-straight segment of the 
curve. In contrast, the numerical data presented in [7] suggest that the 
standard local radius of curvature is not constant on ideal shapes. 

4 Other topologies, variational principles and results 

The key to the existence argument presented here is Lemma 3 which implies 
equicontinuity in the C1 topology for maximizing sequences in Q. We point 
out that there are different variants of the argument that one can follow 
which, for some purposes, may be preferable to the one presented here. In 
particular, one may want to work in a space of curves different from Q, and 
possibly take limits in topologies other than C1. 

One alternative is to consider a space of continuous curves with an upper 
bound on length together with the C° topology. To obtain existence results 
in this case it suffices that the limit of simple curves which are in a given 
knot class and satisfy A > 9 > 0 itself be a simple curve in the same knot 
class, that A be upper semicontinuous under this topology when the limit 
curve is simple and that bounded sets in C1 '1 be compact. In this case, one 
could pass to the limit and use the fact that the length functional is lower 
semicontinuous in the C° topology. Curves that maximize A must then 
achieve the upper bound on length; otherwise, one could rescale the curve 
until the bound is achieved and therefore increase A since it is covariant 
under scalings. 

Other variational principles in which A is maximized can also be consid­
ered. For example, one can consider maximizing A subject to bounds on the 
diameter of a curve, or on the radius of gyration of a curve and so on. Like A 
and length, these quantities are also covariant under scalings. An example 
class of problems along these lines would be to find curves 7* G Qk,a such 
that 

A[j*] = sup A[j\ 
j€Qk,a 
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where 

Qk,a = {7 e Cl{S,R3) I 7 ( 0 ) = 0, 7 - *, G[7] < a, | 7 ' ( s ) | = 1, s G 5 } . 

Here A; is a simple curve of prescribed knot type, G[y] is a given functional 
(for example, radius of gyration) and a is a constant. When G[y] is lower 
semicontinuous in the C 1 topology on Q, we find tha t existence of maximiz-
ers follows by the same arguments used in the proof of Theorem 1. Thus, 
for closed curves, we obtain existence for various optimal packing problems 
as considered in [9]. 
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