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ABSTRACT The global radius of curvature of a space
curve is introduced. This function is related to, but distinct
from, the standard local radius of curvature and is connected
to various physically appealing properties of a curve. In par-
ticular, the global radius of curvature function provides a con-
cise characterization of the thickness of a curve, and of cer-
tain ideal shapes of knots as have been investigated within
the context of DNA.

1. Introduction

Any smooth, non-self-intersecting curve can be thickened into
a smooth, non-self-intersecting tube of constant radius cen-
tered on the curve. If the curve is a straight line, there is no
upper bound on the tube radius, but for nonstraight curves,
there is a critical radius above which the tube either ceases
to be smooth or exhibits self-contact. This critical radius is an
intrinsic property of the curve called its thickness or normal
injectivity radius (1, 2). If one considers the class of smooth,
non-self-intersecting closed curves of a prescribed knot type
and unit length, one may ask which curve in this class is the
thickest. The thickness of such a curve is an intrinsic property
of the knot, and the curve itself provides a certain ideal shape
or representation of the knot type. Approximations of ideal
shapes in this sense have been found via a series of computer
experiments (3, 4). These shapes were seen to have intriguing
physical features, and even a correspondence to time-averaged
shapes of knotted DNA molecules in solution (3–5). In this ar-
ticle we introduce the notion of the global radius of curvature
function for a curve. We show that this function provides a
simple characterization of curve thickness, and we further use
it to derive an elementary necessary condition that any ideal
shape of a knotted curve must satisfy.

The presentation is structured as follows. In Section 2 we
define the global radius of curvature function for a space
curve, and in Section 3 we show that the thickness of a smooth
curve is equal to the minimum value of its global radius of
curvature function. In Section 4 we introduce a definition of
the ideal shape of a smooth, knotted curve and then show
that ideal shapes, by necessity, have the property that their
global radius of curvature function is constant, except possi-
bly on straight portions of the curve. In Section 5 we intro-
duce a definition of global radius of curvature appropriate
for discretized curves (as occur in some numerical computa-
tions for example), discuss discrete analogs of thickness and
ideality, and present some numerical examples showing that
slightly corrected versions of previously computed ideal shapes
(3, 4) satisfy our necessary condition. Finally, in Section 6, we
discuss connections among global radius of curvature, vari-
ous measures of energy, and the writhing number of a space
curve (6).
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2. Global Radius of Curvature

By a curve # we mean a continuous three-dimensional vector
function q�s� of a real variable s with 0 � s � L. The curve
# is smooth if the function q�s� is continuously differentiable
to any order and if the tangent vector q′�s� is nonzero for all
s. In the smooth case, we typically interpret s as the arclength
parameter. A curve # is closed if q�L� = q�0�, in which case
we interpret the parameter s modulo L. Moreover, if # is
smoothly closed, the derivatives of all orders of q�s� agree
at s = 0 and s = L. Finally, a curve # is simple if it has no
self-intersections, that is, q�s1� = q�s2� only when s1 = s2.

Our definition of global radius of curvature is based on the
elementary facts (7) that any three non-collinear points x, y,
and z in three-dimensional space define a unique circle (the
circumcircle), and the radius of this circle (the circumradius)
can be written as

r�x; y; z� = �x − y��x − z��y− z�
4!�x; y; z� ; [1]

where !�x; y; z� is the area of the triangle with vertices x, y,
and z, �x − y� is the Euclidean distance between the points x
and y, and so on. When the points x, y, and z are distinct, but
collinear, the circumcircle degenerates into a straight line, and
we assign a value of infinity to r�x; y; z�. Note that any three
non-collinear points define not only a unique circumcircle, but
also a unique circumsphere that contains the circumcircle as
a great circle.

Given three non-collinear points x, y, and z, there are var-
ious formulae for computing the area !�x; y; z�. One exam-
ple is

!�x; y; z� = 1
2
�x − z��y− z�� sin θxzy�; [2]

where θxzy is the angle between the vectors x − z and y − z.
This particular expression shows the connection between the
value of the circumradius function r�x; y; z� and the standard
sine rule from elementary geometry.

When x, y, and z are points on a simple, smooth curve
#, the domain of the function r�x; y; z� can be extended by
continuous limits to all triples of points on #. For example, if
x = q�s�, y = q�σ�, and z = q�τ� are three distinct points on
#, then it is straightforward to show that

lim
τ→σ

r�x; y; z� = �x − y�
2� sin θxy′ �

; [3]

where θxy′ is the angle between the vector x − y 6= 0 and the
tangent vector to # at y. We denote this limit by r�x; y; y� and
note that the limit circumcircle passes through x and is tangent
to # at y. Similar expressions and interpretations hold for the
other single limits. For the double limit σ; τ → s we obtain
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the familiar result

lim
σ;τ→s

r�x; y; z� = ρ�x�; [4]

where ρ�x� is the standard local radius of curvature of # at
x. We denote this limit by r�x; x; x� and note that the limit
circumcircle is actually the osculating circle to # at x.

Given a curve # we define the global radius of curvature
ρG�x� at each point x of # by

ρG�x� x= inf
y;z�#

x 6=y 6=z 6=x

r�x; y; z�: [5]

When # is simple and smooth, the infimum in 5 can be re-
placed by a minimum over all y; z on #, namely

ρG�x� = min
y;z�#

r�x; y; z�; [6]

and the function ρG�x� is a continuous function of x on #.
To obtain 6 from 5, one exploits the continuity properties of
r�x; y; z� and the fact that r�x; y; z� admits the limits 3 and 4
when x, y, and z are restricted to lie on #.

The function ρG can be interpreted as a generalization, in-
deed a globalization, of the standard local radius of curvature
function. From 6 and 4, we see that global radius of curva-
ture is bounded by local radius of curvature in the sense that
0 � ρG�x� � ρ�x� for all x � #. Also, just as with local radius
of curvature, the global radius of curvature function is infinite
when # is a straight line. Conversely, if on a curve # there is
a point x such that ρG�x� is infinite, then ρG is infinite at all
points and # is a straight line.

The optimality conditions associated with the minimization
in 6 imply a certain geometrical characterization of the global
radius of curvature. In particular, depending on the point x on
#, the number ρG�x� may be the local radius of curvature, or
the strictly smaller radius of a circle containing x and another
distinct point y of the curve at which the circle is tangent, as
illustrated in Fig. 1 a and b. Thus, to determine ρG�x�, one
need consider only the minimization in 6 with the restriction
y = z.

The above conclusion may be reached by geometrical ar-
guments as follows. Suppose ρG�x� were achieved by a pair
of distinct points y and z, each distinct from x. Unless the
curve # is tangent to the circumsphere at either y or z, or
both, we obtain an immediate contradiction, for otherwise
there are points ỹ and z̃ on # close to y and z for which
r�x; ỹ; z̃� + r�x; y; z�. If the tangency is at y, the circle through
x and tangent to # at y lies on the circumsphere and so has
radius less than or equal to the great circle radius, implying
r�x; y; y� � r�x; y; z�. This shows that the minimum in 6 is
never exclusively achieved by three distinct points on # and
so is always achieved by limits such as 3 or 4. Similar argu-
ments show that not all the limit cases of the form 3 need be
considered. In particular, one need not consider limits such as
r�x; x; y� but only r�x; y; y� with the case y = x of local radius
of curvature being possible.

If on a simple, smooth curve # the function ρG is not con-
stant, then certain points y and z are excluded from achieving
the minimum in the definition 6 of ρG�x�. More precisely, let
a and d be the minimum and maximum of ρG on #, let c be
any number in the open interval �a; d�, and let E be the set
of those x on # such that ρG�x� + c. Then, for any x in the set
E, the minimum in 6 can be achieved only by points y and z in
the set E. That is, if ρG�x� = r�x; y; y�, then ρG�y� � ρG�x�.
This property, which follows from the definition of ρG and
the fact that r�x; y; z� is symmetric in its arguments at distinct
points, will be referred to as the lower interaction property of
the global radius of curvature.

Fig. 1. Interpretation of the global radius of curvature ρG at var-
ious points on a non-ideal and an ideal shape of a 31 torus knot.
(a) Generic shape produced by using a simple parametric representa-
tion. The light gray discs indicate points where ρG can be associated
with the local radius of curvature, and the dark gray discs indicate
points where ρG can be associated with a distance of closest approach.
(b) Numerically computed ideal shape. Here ρG corresponds to a dis-
tance of closest approach at all points. (c) Same shape as in b but
with a different visualization of the global radius of curvature. Each
of the several spokes emanating from a point on the curve represents
the diameter of a disc that realizes ρG at that point. (d) Global and
local radius of curvature plots for the shapes in a and b. Curves 1
and 3 are global and local radius of curvature, respectively, for the
non-ideal shape a. Curves 2 and 4 are global and local radius of cur-
vature, respectively, for the ideal shape b. (Curve 3 is nearly periodic
but its upper limits are not contained within the plot range.)

To any curve # we associate a number 1�#� defined by

1�#� x= inf
x�#
ρG�x�: [7]

When # is simple and smooth, the function ρG�x� is a contin-
uous function of x on #, and the infimum in 7 can be replaced
by a minimum, namely

1�#� = min
x�#

ρG�x�: [8]

From 8 and 6 we see that on a simple, smooth curve, 1�#� is
the minimum value of the circumradius function r�x; y; z� over
all triplets of points. This observation leads to the following
physical interpretation. Any spherical shell of radius less than
1�#� cannot intersect # in three or more points (counting tan-
gency points twice). In effect, a billiard ball of radius less than
1�#� cannot find a stable resting place in #, for there is always
enough room for it to pass through the curve, as illustrated in
Fig. 2b.

Arguments involving the circumsphere can be used to
demonstrate that, for a given smooth curve #, the number
1�#� is either the minimum local radius of curvature or the
strictly smaller radius of a sphere that contains no portion of
the curve in its interior and is tangent to the curve at two di-
ametrically opposite points x and y. At such points we have
the symmetry property r�x; x; y� = r�x; y; y�. Moreover, x and
y must be points of closest approach of # in the sense that
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Fig. 2. Interpretation of the minimum global radius of curvature
for a numerically computed ideal 31#31 knot. (a) The tube inter-
pretation. The minimal value of ρG is the radius of the tube shown
here. The dark bands on the tube indicate regions of near-zero curva-
ture (straight portions). (b) The sphere interpretation. Any spherical
shell of radius less than the minimum value of ρG cannot intersect
the curve at three or more points (counting tangencies twice). The
spheres shown here have a radius equal to the minimum value of ρG.
(c) Global radius of curvature plot for shape in a. Curve 2 corre-
sponds to raw data from Katritch et al. (4) and curve 1 corresponds
to a corrected shape. Curves 1 and 2 are nearly identical except for
the two downward spikes in curve 2. (d) Comparison of global radius
of curvature (curve 1) and local radius of curvature (curve 2) for the
corrected shape.

x 6= y and the vector x− y is orthogonal to the tangent vectors
to # at both x and y.

As a real-valued function on the vector space of twice con-
tinuously differentiable curves q�s�, 1�#� has various continu-
ity properties with respect to the norm

��#�� = max
0�s�L

��q�s��; �q′�s��; �q′′�s���:

In particular, 1�#� is continuous at any simple curve # which
is not a straight line, while for straight lines 1�#� is infinite.
Moreover, 1�#k� tends to zero for any sequence #k of smooth,
simple curves that tends to a self-intersecting curve.

3. Thickness of a Curve

The thickness of a simple, smooth space curve # may be de-
fined as follows (1, 2). Given a point x on # and a real number
η , 0, let $�x; η� denote the circular disk of radius η cen-
tered at x and contained in the normal plane to # at x. For
sufficiently small η, the disks $�x; η� are pairwise disjoint and
their union forms a smooth solid tube 4 �#; η� around #. If #
is a straight line, there is no upper bound on the tube radius η,
but if # is curved, there is a critical radius η∗�#� above which
the tube either ceases to be smooth or exhibits self-contact.
This critical radius is called the thickness or normal injectivity
radius of #. Simple geometrical considerations show that

η∗�#� = min
{

min
x�#

ρ�x�; d∗�#�/2
}
; [9]

where d∗�#� is a minimum distance of closest approach de-
fined as

d∗�#� x= min
x;y��
�x − y�: [10]

Here � is the set of all pairs of points x; y on # such that
x 6= y, and such that the vector x − y is orthogonal to the
tangent vectors to # at both x and y.

It can now be seen that the minimum global radius of curva-
ture 1�#� is precisely the thickness η∗�#�. That is to say, 1�#�
is either the minimum local radius of curvature or half of the
minimum distance of closest approach, whichever is smaller.
However, in contrast to the characterization in 9, the quan-
tity 1�#� given in 8 simultaneously captures the possibility that
curve thickness may be controlled by local curvature effects,
or by the distance of closest approach of non-adjacent points
on #. Thus, in addition to the interpretation of 1�#� in terms
of circumspheres tangent to the curve as illustrated in Fig. 2b,
we see that 1�#� is also the radius of the thickest smooth tube
that can be centered on #, as illustrated in Fig. 2a.

4. Ideal Shapes of Knots

Using the global radius of curvature function ρG and the thick-
ness 1, we can formulate a concise mathematical definition of
an ideal shape of a knotted curve. In particular, let + denote
the set of all simple, smooth curves # of a specified knot type
with fixed length L , 0, and consider the problem of finding
those curves #∗ in + satisfying

1�#∗� = sup
#�+

1�#�: [11]

We call any curve #∗ in + an ideal shape if it achieves the
supremum in 11. As illustrated in Fig. 2a, this definition cor-
responds precisely to the intuitive notion of the thickest tube
of fixed length that can be tied into a given knot (3, 4).

We are not aware of any result guaranteeing the existence
of a smooth ideal shape for an arbitrary knot type (in partic-
ular, curves that maximize 1�#� may or may not be smooth).
Nevertheless, we can derive a necessary condition, implied by
11, that any smooth ideal shape must satisfy. Given any curve
# in +, let 3# denote the set of all points x on # for which
ρ�x� is infinite, that is, 3# is the set of straight segments of #.
Then a curve # can be ideal only if there is a constant a , 0
such that ρG�x� = a for all points on #\3#, and ρG�x� � a
for all points on 3#. That is to say, a smooth knotted curve #
can be ideal only if its global radius of curvature function is
constant and minimal on every curved segment of #.

The above conclusion may be reached by a contradiction
argument as follows. Let #∗ be an ideal shape in + with ar-
clength parametrization q∗�s�, 0 � s � L, and assume ρG is
not constant on a curved segment of #∗. Let a and d be the
minimum and maximum of ρG on #∗, and note that, by conti-
nuity, there is a number c , a for which the set

F∗ = �x � #∗\3#∗ � ρG�x� � c�
is non-empty. Next, consider any number b in the open inter-
val �a; c� and let

E∗ = �x � #∗ � ρG�x� + b�:
For any x in the set E∗ recall that the lower interaction prop-
erty of ρG implies the minimum in 6 is only achieved by points
y and z that are also in the set E∗.

Let F∗q and E∗q be those subsets of �0; L� corresponding to
F∗ and E∗ under the parametrization q∗�s�, and consider a
second curve #∗∗ with parametrization q∗∗�s�, 0 � s � L. For
s � �0; L�\F∗q let q∗∗�s� = q∗�s�, and for s � F∗q let

q∗∗�s� = q∗�s� + εφ�s�q∗′′�s�;
where ε , 0 is a parameter and φ�s� is a smooth, bounded
function with compact support in F∗q . Then #∗∗ differs from #∗

only in the interior of F∗q and, for all ε , 0 sufficiently small,
#∗∗ is strictly shorter than #∗. Moreover, since c , b, the lower
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interaction property of ρG together with the continuity prop-
erties of r�x; y; z� imply that E∗∗q = E∗q for all sufficiently small
ε , 0, in which case #∗∗ and #∗ have the same minimum value
of ρG. Thus, we can construct a curve #∗∗ of the same knot
type as #∗, the same minimum value of ρG, but of strictly
smaller length. Rescaling the length of #∗∗ to L yields a curve
in + whose minimum value of ρG is greater than that of #∗,
contradicting the hypothesis that #∗ was ideal. Moreover, the
constant value of ρG on curved segments of #∗ must be the
minimum value of ρG; otherwise, the same argument can be
made.

5. Discrete Curves

In many cases the object of study is not a smooth curve, but
rather a discrete curve, as in some numerical computations
for example. By a discrete curve #n we mean a list of distinct
points or nodes �q1; : : : ; qn� in three-dimensional space. To
any discrete curve #n one can associate a continuous, piece-
wise linear curve # by connecting q1 to q2 with a straight line
and so on. Here we extend the definitions of the global radius
of curvature, thickness, and the ideal shape of a knot to this
discrete case.

Given a discrete curve, we define the global radius of cur-
vature ρG at each node qi of #n by

ρG�qi� = min
1�j;k�n
i 6=j 6=k 6=i

r�qi; qj; qk�:

That is, ρG�qi� is the radius of the smallest circle containing qi
and two other distinct nodes qj and qk. In the discrete case, we
interpret the local radius of curvature ρ at a node qi of #n as
ρ�qi� = r�qi−1; qi; qi+1�. Finally, we can associate a thickness
1�#n� to #n by the expression

1�#n� = min
1�i�n

ρG�qi�:

That is, 1�#n� is the radius of the smallest circle containing
three distinct nodes qi, qj and qk of #n.

A mathematical definition of an ideal shape for knots
formed by discrete curves can be formulated with 1�#n�. Let
+n denote the set of all discrete curves #n with the property
that the associated closed, piecewise linear curve # is simple,
of a specified knot type and of a prescribed length L , 0. For
n sufficiently large the set +n is non-empty (a sufficiently fine
discretization of a smooth curve of the given knot type is in
this set), and one may consider the problem of finding those
discrete curves #∗n in +n satisfying

1�#∗n� = sup
#n�+n

1�#n�: [12]

We call any #∗n in +n an ideal shape if it achieves the supre-
mum in 12.

Just as in the smooth case, we can derive a necessary con-
dition, implied by 12, that any ideal curve in +n must satisfy.
Given any #n in +, let 3n denote the set of all nodes qi in #n
for which qi and its two adjacent-index neighbors are collinear.
Then a discrete curve #n can be ideal only if there is a con-
stant a , 0 such that ρG�qi� = a for all nodes in #n\3n, and
ρG�qi� � a for all nodes in 3n. That is to say, a knotted dis-
crete curve #n can be ideal only if its global radius of curvature
function is constant and minimal on every curved sequence of
nodes in #n. This conclusion may be reached by using a curve-
shortening argument analogous to that in the smooth case.

Using the discrete global radius of curvature, we were able
to verify that previously computed ideal shapes of knots (3, 4)
(more precisely, slightly corrected versions of them) are in
agreement with our necessary condition. In Fig. 1 we compare
global and local radius of curvature for both a generic and an
ideal 31 torus knot. For a generic 31 torus knot shape, ρG

varies in a general manner with respect to arclength as shown
by curve 1 in plot Fig. 1d. However, for data corresponding
to an ideal shape (3), ρG varies according to our necessary
condition as shown by curve 2 in plot Fig. 1d. The data for
the ideal shape contains 160 points nearly uniformly spaced
in arclength and was provided by the authors of (3, 4), who
computed it using a Metropolis Monte Carlo procedure.

In Fig. 2 we present results for a composite 31#31 knot. The
data for this knot shape contains 286 points nearly uniformly
spaced in arclength and was provided, as in the case of the 31
knot, by the authors of refs. 3 and 4. The two upward spikes
in both curves 1 and 2 in the plot in Fig. 2c occur at nearly
straight regions of the knot as indicated by the dark bands
in Fig. 2a. This behavior is in concordance with our neces-
sary condition for idealness. However, the downward spikes
in curve 2 are due to small regions of high local curvature,
are in disagreement with our analytical characterization, and
imply that the original shape computed in ref. 4 is slightly
non-ideal. Working with the original knot shape data, we per-
formed a local smoothing in these regions of high local curva-
ture and were able to correct, or improve, the original shape.
The corrected shape not only satisfies our global curvature
condition, but also has a larger value of 1�#� as can be seen
by comparing curve 1 (corrected shape) and curve 2 (original
shape) in the plot in Fig. 2c. The corrected shape is shown
in Fig. 2 a and b and is visually identical to the original one
computed in ref. 4.

The data in Figs. 1 and 2 fully support our necessary condi-
tion on global radius of curvature. In particular, global radius
of curvature is constant to within 0.1% for the entire arclength
interval in the case of the ideal 31 knot, and to within 0.4% for
the three obvious intervals in the case of the ideal 31#31 knot.
Furthermore, the data also suggest that, in contrast, local ra-
dius of curvature is not particularly simple on ideal shapes. For
example, the oscillations in local radius of curvature around
the arclength values of 0:4 and 0:9 in the plot in Fig. 2d are
well-resolved by the discretization and thus appear not to be
numerical artifacts. Each of the two regions of oscillation oc-
cur over more than 20 nodes, and we were unable to smooth
these oscillations without causing significant decreases in the
value of 1�#�. Nevertheless, it is ultimately unclear as to what
the discrete data of refs. 3 and 4 implies about ideal shapes in
the continuous limit, that is, as the number of discretization
points becomes infinite, and we are unaware of any results in
this direction.

6. Discussion

We have shown that the notion of global radius of curvature
provides a concise characterization of the thickness of a curve,
and of certain ideal shapes of knots. The circumradius and
global radius of curvature functions can apparently also be
used in other ways. Here we mention applications in the study
of knot energies and describe a connection with the writhing
number of a space curve.

Various authors have considered the concept of a knot en-
ergy (1, 8), which, for our purposes, will mean a functional
E�#� that is defined and finite for any smooth, simple closed
curve #, and which tends to infinity as # tends to a non-simple
curve. In other words, E�#� is a knot energy if it separates
knot types by infinite energy barriers. The thickness energy
E�#� = 1/1�#� is one example, but to evaluate this functional
one must solve a minimization problem. Here we discuss in-
tegral knot energies, in which the functional E�#� is defined
as the integral of an appropriate density function over the
curve #.

The most intuitive approach to the construction of an in-
tegral knot energy is the following. Given an arbitrary sim-
ple, closed curve # with parametrization q�s�, let f �s; σ� =
�q�s� − q�σ�� be the pairwise Euclidean distance function for
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#. Then, for any number m � 2, a candidate knot energy func-
tional E�#� would be the double integral of f−m�s; σ�. The
basic idea here is that, for m � 2, this integral would tend
to infinity as q�s� tends to q�σ� with s 6= σ , thus providing
the required infinite energy barrier. However, such an inte-
gral would be divergent due to nearest-neighbor effects since
f �s; σ� = 0 when s = σ . Thus, one needs to either regular-
ize the integrand f−m�s; σ� by subtracting something equally
divergent as s → σ , or mollify the integrand by using a mul-
tiplicative factor that tends to zero at an appropriate rate as
s→ σ (1, 8).

The circumradius and global radius of curvature functions
introduced in this article lead to families of integral knot ener-
gies that do not require explicit regularization or mollification.
To consider some natural examples, first note that the func-
tions 1/r�x; y; z�, 1/r�x; y; y�, and 1/ρG�x� are all bounded,
continuous functions as x, y, and z vary on a smooth, simple
closed curve #. For any p � 2, the Lp-norms of these func-
tions lead to the candidate energy functionals

Up;3�#� =
(∫ ∫ ∫

1
rp�x; y; z� d#xd#yd#z

)1/p

Up;2�#� =
(∫ ∫

1
dp�x; y� d#xd#y

)1/p

Up;1�#� =
(∫

1
ρ
p
G�x�

d#x

)1/p

;

where the integrals are taken over the curve # and d�x; y� =
r�x; y; y�. Using the definition of the L:-norm and the fact
that the integrands are bounded and continuous, we obtain
the results

lim
p→:

Up;i�#� = 1/1�#�; �i = 1; 2; 3�;

which connect these families of integral energies to the thick-
ness energy. For p = 2 the functional Up;2�#�, and its sym-
metric counterpart

Ûp;2�#� =
(∫ ∫

1
�d�x; y�d�y; x��p/2 d#xd#y

)1/p

;

can be shown to be equivalent to knot energies recently stud-
ied by Buck and Simon (1).

There is also a connection between the non-symmetric dou-
blet function d�x; y� and the writhing number of a space curve
(6). In the Gauss integral form, the writhing number Wr�#� of
an oriented, smooth, simple space curve # is

Wr�#� = 1
4π

∫ ∫ e · �ty 3 tx�
�y− x�2 d#xd#y;

where e = �y− x�/�y− x�, and tx and ty are the unit tangents to
# at x and y. Using the doublet function d�x; y�, one then has

Wr�#� = 1
4π

∫ ∫
sinψ�x; y�
d�x; y�d�y; x� d#xd#y;

where ψ�x; y� denotes the angle, with an appropriate sign con-
vention, between the two planes containing the circumcircles
associated with d�x; y� and d�y; x�.
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